ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.08.2024

Просмотров: 1775

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

1. Теория множеств

1.1. Основные определения

1.2. Операции над множествами

1.3. Системы множеств

1.4. Декартово произведение множеств

1.5. Бинарные отношения

1.5.1. Определение бинарного отношения

1.5.2. Способы задания бинарного отношения

1.5.3. Свойства бинарных отношений

1.5.4. Отношения эквивалентности

1.7. Контрольные вопросы и упражнения

2. Математическая логика

2.1.Алгебра логики

2.1.1. Логические высказывания

2.1.2. Основные логические операции

2.1.3. Формулы алгебры логики

2.1.4. Логические функции

Функции одной переменной

Функции двух переменных

2.2. Булева алгебра

2.2.1. Булевы функции и операции

Свойства булевых операций

2.2.2. Совершенные дизъюнктивная и конъюнктивная нормальные формы

2.3. Полные системы логических функций

Класс функций, сохраняющих ноль

Класс функций, сохраняющих единицу

Класс самодвойственных функций

Класс монотонных функций

Класс линейных функций

2.4. Задача минимизации днф

2.4.1. Основные определения

2.4.2. Этапы минимизации днф

2.4.3. Минимизация днф методом Квайна

2.5. Синтез логических схем

2.6. Контрольные вопросы и упражнения

3. Теория графов

3.1. Основные определения

3.1.1. Общие понятия

3.1.2. Ориентированные и неориентированные графы

3.1.3. Маршруты в графах

3.1.4. Частичные графы и подграфы

3.1.5. Связность в графах

3.1.6. Изоморфизм. Плоские графы

3.2. Отношения на множествах и графы

3.3. Матрицы смежности и инциденций графа

3.4. Операции над графами

3.4.1. Сумма графов

3.4.2. Пересечение графов

3.5. Степени графов

3.5.1. Степени неориентированных графов

3.5.2. Степени ориентированных графов

3.6. Характеристики графов

3.6.1. Характеристики расстояний в графах

3.6.2. Характеристические числа графов

3.7. Циклы и разрезы графа

3.7.1. Остов и кодерево

3.7.2 . Базисные циклы и разрезающие множества

Свойства базисных циклов и разрежающих множеств

3.7.3. Цикломатическая матрица и матрица разрезов

Составление цикломатической матрицы

Составление матрицы разрезов

3.8. Задача определения путей в графах

3.8.1. Определение путей в графе

3.8.2. Алгоритм определения кратчайших путей

Алгоритм Дейкстры

Первая итерация

Вторая итерация

Третья итерация

3.9. Обход графа

3.9.1. Эйлеровы маршруты

3.9.2. Гамильтоновы маршруты

3.10. Контрольные вопросы и упражнения

Список литературы

Все множество наборов переменных по значениям функции на них можно разбить на 2 подмножества:

[1] – единичное множество наборов, на которых f = 1;

[0] – нулевое множество наборов, на которых f = 0.

Теперь определим количество различных функций nпеременных. Каждая функция задается набором своихkзначений, которому также можно поставить в соответствиеk-разрядное двоичное число.

Располагая функции в таблице в порядке возрастания соответствующих им чисел, мы получим все возможные различные функции. Количество таких функций будет равно .

Далее рассмотрим логические функции одной и двух переменных, которые определяют также и операции, используемые при записи логических формул. Их можно считать «элементарными» функциями (табл. 2.4, 2.5).

Таблица 2.4. Функции g(x)

х

g1(x)

g2(x)

g3(x)

g4(x)

0

1

0 0

0

1

1

0

1 1

Таблица 2.5. Функции двух переменных f(х1, х2)

х1 х2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

f16

0 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0 1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1 0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

1 1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1



Функции одной переменной

Функция g2(х) =x определяет логическую операцию –повторениепеременнойx, а функция g3(х) =x определяет логическую операцию –отрицаниепеременнойx.

g1(х) иg4(х) по сути являются не функциями, а константами 0 и 1.

Функции двух переменных

f2= х1 х2 – конъюнкция или логическое умножение

f8= х1x2 – дизъюнкция или логическое сложение.

f10 = х1 х2 – эквивалентность;

f7= х1х2– неэквивалентность;

f12= х2х1– функция следования (импликации) х1;

f14= х1х2 – функция следования (импликации) х2;

f3= х1х2 – функция запрета х1;

f5= х2х1 – функции запрета х2;

f9= х1x2– функция (стрелка) Пирса;

f15= х1| х2 – функция (штрих) Шеффера.

Причем, функции f2, f8, f10, f12, f14 определены ранее как основные логические функции (табл. 2.1).

Функции f3, f5, f7, f9, f15 являются производными от них:

f3=f14или х1х2 = х1 х2,

f5=f12или х2х1 = х2 х1,

f7=f10или х1 х2 = х1 х2,

f9=f8или х1x2 = х1 х2.

f15=f2 или х1| х2 = х1 х2

Остальные 6 функций, по сути, не являются функциями от двух переменных. Функции f4,f6,f11,f13 зависят существенно только от одной переменной:

f41, х2) =  х1, f61, х2) =  x2,

f111, х2) =х2, f131, х2) =х1.

Функции f1,f16 не зависят ни от одной переменной и являются функциями – константами:

f11, х2) = 0, f161, х2) = 1.


Замечание. Операция неэквивалентности (х1х2), определяющая функциюf71, х2), имеет и другие назва­ния. В математической логике она известна еще как опера­ция «исключающее или», а в двоичной алгебре – как операция «сложение по модулю два».

Исходя из рассмотренных элементарных функций, можно построить формулы для более сложных функций трех и более числа переменных.

Пример.ФормулаF= ((х1х2) •х2)х3 определяет функцию трех переменныхf(х1, х2, х3 ).

Таким образом, суперпозиция элементарных функций позволяет получить другие логические функции конечного или бесконечного числа переменных. Совокупность всех возможных логических функций образует множество, которое обозначим P2.

2.2. Булева алгебра

2.2.1. Булевы функции и операции

Существуют много видов алгебр логики, в которых произвольная логическая функция представляется как суперпозиция некоторых базисных функций. Например, широко известной является булева система функций: конъюнкция (), дизъюнкция () и отрицание ( ). Эта система функций в качестве базиса была введена английским математиком Булем, с именем которого связа­но начало всей математической логики. Поэтому алгебра логики на основе этих операций называется алгеброй Буля илибулевой алгеброй. Рассмотрим свойства булевых операций.

Свойства булевых операций

1. Аксиоматические свойства

х • х = х, x  x = x,

x •x = 0, x x = 1, х • 0 = 0, x  0 = x,

x • 1 = x, x  1 = 1.

2. Свойства коммутативности

х1  х2 = х2  х1,

х1 • х2 = х2 • х1.

3. Свойства ассоциативности

1  х2)  х3 = х1  (х2  х3),

1 • х2) • х3 = х1 • (х2 • х3).

4. Свойства дистрибутивности

1  х2) • х3 = (х1 • х3)  (х2 • х3),

1 • х2)  х3 = (х1  х3) • (х2  х3).

5. Принцип двойственности (Закон де Моргана)

х1 • х2 = х1 х2,

х1  х2 = х1 •х2.

6. Закон двойного отрицания: х =х.

В булевой алгебре любая логическая функция может быть представлена булевой формулой в виде совершенной дизъюнктивной формы (СДНФ). Причем, как будет показано ниже, представление произвольной логической функции в виде СДНФ является единственным.