ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.07.2020
Просмотров: 34521
Скачиваний: 521
СОДЕРЖАНИЕ
Предмет физики и ее связь с другими науками
§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
§ 3. Ускорение и его составляющие
§ 4. Угловая скорость и угловое ускорение
Глава 2 Динамика материальной точки и поступательного движения твердого тела
§ 5. Первый закон Ньютона. Масса. Сила
§ 9. Закон сохранения импульса. Центр масс
§ 10. Уравнение движения тела переменной массы
§11. Энергия, работа, мощность
§ 12. Кинетическая и потенциальная энергии
§ 13. Закон сохранения энергии
§ 14. Графическом представление энергии
§ 15. Удар абсолютно упругих и неупругих тел
Глава 4 Механика твердого тела
§ 17. Кинетическая энергия вращения
§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела
§ 19. Момент импульса и закон то сохранения
§ 21. Деформации твердого тела
Глава 5 Тяготение. Элементы теории поля
§ 22. Законы Кеплера. Закон всемирного тяготения
§ 23. Сила тяжести и вес. Невесомость
§ 24. Поле тяготения и то напряженность
§ 25. Работа в поле тяготения. Потенциал поля тяготения
§ 27. Неинерциальные системы отсчета. Силы инерции
Глава 6 Элементы механики жидкостей
§ 28. Давление в жидкости и газе
§ 30. Уравнение Бернулли и следствия из него
§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
§ 32. Методы определения вязкости
§ 33. Движение тел в жидкостях и газах
Глава 7 Элементы специальной (частной) теории относительности
§ 34. Преобразования Галилея. Механический принцип относительности
§ 35. Постулаты специальной (частной) теории относительности
§ 37. Следствия из преобразований Лоренца
§ 38. Интервал между событиями
§ 39. Основной закон релятивистской динамики материальной точки
§ 40. Закон взаимосвязи массы и энергии
2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ
Глава 8 Молекулярно-кинетическая теория идеальных газов
§ 41. Статистический и термодинамический методы. Опытные законы идеального газа
§ 42. Уравнение Клапейрона — Менделеева
§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов
§ 45. Барометрическая формула. Распределение Больцмана
§ 46. Среднее число столкновений и средняя длина свободного пробега молекул
§ 47. Опытное обоснование молекулярно-кинетической теории
§ 48. Явления переноса в термодинамически неравновесных системах
§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов
§ 51. Первое начало термодинамики
§ 52. Работа газа при изменении его объема
§ 54. Применение первого начала термодинамики к изопроцессам
§ 55. Адиабатический процесс. Политропный процесс
§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы
§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью
§ 58. Второе начало термодинамики
§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа
Глава 10 Реальные газы, жидкости и твердые тела
§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия
§ 61. Уравнение Ван-дер-Ваальса
§ 62. Изотермы Ван-дер-Ваальса и их анализ
§ 63. Внутренняя энергия реального газа
§ 66. Свойства жидкостей. Поверхностное натяжение
§ 68. Давление под искривленной поверхностью жидкости
§ 70. Твердые тела. Моно- и поликристаллы
§ 71. Типы кристаллических твердых тел
§ 73. Теплоемкость твердых тел
§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела
§ 75. Фазовые переходы I и П рода
§ 76. Диаграмма состояния. Тройная точка
3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ
§ 77. Закон сохранения электрического заряда
§ 79. Электростатическое поле. Напряженность электростатического поля
§ 80. Принцип суперпозиции электростатических полей. Поле диполя
§ 81. Теорема Гаусса для электростатического поля в вакууме
§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
§ 83. Циркуляция вектора напряженности электростатического поля
§ 84. Потенциал электростатического поля
§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
§ 86. Вычисление разности потенциалов по напряженности поля
§ 87. Типы диэлектриков. Поляризация диэлектриков
§ 88. Поляризованность. Напряженность поля в диэлектрике
§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
§ 90. Условия на границе раздела двух диэлектрических сред
§ 92. Проводники в электростатическом поле
§ 93. Электрическая емкость уединенного проводника
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
§ 97. Сторонние силы. Электродвижущая сила и напряжение
§ 98. Закон Ома. Сопротивление проводников
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
§ 100. Закон Ома для неоднородного участка цепи
§ 101. Правила Кирхгофа для разветвленных цепей
Глава 13 Электрические токи в металлах, вакууме и газах
§ 102. Элементарная классическая теория электропроводности металлов
§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
§ 104. Работа выхода электронов из металла
§ 105. Эмиссионные явления и их применение
§ 106. Ионизация газов. Несамостоятельный газовый разряд
§ 107. Самостоятельный газовый разряд и его типы
§ 109. Магнитное поле и его характеристики
§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
§ 111. Закон Ампера. Взаимодействие параллельных токов
§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
§ 113. Магнитное поле движущегося заряда
§ 114. Действие магнитного поля на движущийся заряд
§ 115. Движение заряженных частиц в магнитном поле
§ 116. Ускорители заряженных частиц
§ 118. Циркуляция вектора В магнитного поля в вакууме
§ 119. Магнитные поля соленоида и тороида
§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
Глава 15 Электромагнитная индукция
§122. Явление электромагнитной индукции (опыты Фарадея)
§ 123. Закон Фарадея и его вывод из закона сохранения энергии
§ 124. Вращение рамки в магнитном поле
§ 125. Вихревые токи (токи Фуко)
§ 126. Индуктивность контура. Самоиндукция
§ 127. Токи при размыкании и замыкании цепи
§ 130. Энергия магнитного поля
Глава 16 Магнитные свойства вещества
§ 131. Магнитные моменты электронов и атомов
§ 133. Намагниченность. Магнитное поле в веществе
§ 134. Условия на границе раздела двух магнетиков
§ 135. Ферромагнетики и их свойства
§ 136. Природа ферромагнетизма
Глава 17 Основы теории Максвелла для электромагнитного поля
§ 137. Вихревое электрическое поле
§ 139. Уравнения Максвелла для электромагнитного поля
Глава 18 Механические и электромагнитные колебания
§ 140. Гармонические колебания и их характеристики
§ 141. Механические гармонические колебания
§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
§ 143. Свободные гармонические колебания в колебательном контуре
§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
§ 145. Сложение взаимно перпендикулярных колебаний
§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
§ 152. Мощность, выделяемая в цепи переменного тока
§ 153. Волновые процессы. Продольные и поперечные волны
§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
§ 155. Принцип суперпозиции. Групповая скорость
S 159. Эффект Доплере в акустике
§ 160. Ультразвук и его применение
Глава 20 Электромагнитные волны
§ 161. Экспериментальное получение электромагнитных волн
§ 162. Дифференциальное уравнение электромагнитной волны
§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
§ 164. Излучение диполя. Применение электромагнитных волн
5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ
Глава 21 Элементы геометрической и электронной оптики
§ 165. Основные законы оптики. Полное отражение
§ 166. Тонкие линзы. Изображение предметов с помощью линз
§ 187. Аберрации (погрешности) оптических систем
§ 168. Основные фотометрические величины и их единицы
§ 189. Элементы электронной оптики
§ 170. Развитие представлений о природе света
§ 171. Когерентность и монохроматичность световых волн
§ 173. Методы наблюдения интерференции света
§ 174. Интерференция света в тонких пленках
§ 175. Применение интерференции света
§ 176. Принцип Гюйгенса — Френеля
§ 177. Метод зон Френеля. Прямолинейное распространение света
§ 178. Дифракция Френеля на круглом отверстии и диске
§ 178. Дифракция Фраунгофера на одной щели
§ 180. Дифракция Фраунгофера на дифракционной решетке
§ 181. Пространственная решетка. Рассеяние света
§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
§ 183. Разрешающая способность оптических приборов
Глава 24 Взаимодействие электромагнитных волн с веществом
§ 186. Электронная теория дисперсии светя
§ 187. Поглощение (абсорбция) света
§ 189. Излучение Вавилова — Черенкова
§ 190. Естественный и поляризованный свет
§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
§ 192. Двойное лучепреломление
§ 193. Поляризационные призмы и поляроиды
§ 194. Анализ поляризованного света
§ 195. Искусственная оптическая анизотропия
§ 196. Вращение плоскости поляризации
Глава 26 Квантовая природа излучения
§ 197. Тепловое излучение и его характеристики
§ 199. Законы Стефана — Больцмана и смещения Вина
§ 200. Формулы Рэлея — Джинса и Планка
§ 201. Оптическая пирометрия. Тепловые источники света
§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
§ 205. Масса и импульс фотона. Давление света
§ 206. Эффект Комптона и его элементарная теория
§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ
Глава 27 Теория атома водорода по Бору
§ 208. Модели атома Томсона и Резерфорда
§ 209. Линейчатый спектр атома водорода
§ 212. Спектр атома водорода по Бору
Глава 28 Элементы квантовой механики
§ 213. Корпускулярно-волновой дуализм свойств вещества
§ 214. Некоторые свойства волн да Бройля
§ 215. Соотношение неопределенностей
§ 216. Волновая функция и ее статистический смысл
§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
§ 218. Принцип причинности в квинтовой механике
§ 219. Движение свободной частицы
§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
§ 222. Линейный гармонический осциллятор в квантовой механике
Глава 29 Элементы современной физики атомов и молекул
§ 223. Атом водорода в квантовой механике
§ 224. 1s-Состояние электрона в атоме водорода
§ 225. Спин электрона. Спиновое квантовое число
§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
§ 227. Принцип Паули. Распределение электронов в атоме по состояниям
§ 228. Периодическая система элементов Менделеева
§ 230. Молекулы: химические связи, понятие об энергетических уровнях
§ 231. Молекулярные спектры. Комбинационное рассеяние света
§ 232. Поглощение. Спонтанное и вынужденное излучения
§ 233. Оптические квантовые генераторы (лазеры)
Глава 30 Элементы квантовой статистики
§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
§ 236. Вырожденный электронный газ в металлах
§ 237. Понятие о квантовой теории теплоемкости. Фононы
§ 238. Выводы квантовой теории электропроводности металлов
§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
Глава 31 Элементы физики твердого тела
§ 240. Понятие о зонной теории твердых тел
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
§ 242. Собственная проводимость полупроводников
§ 243. Примесная проводимость полупроводников
§ 244. Фотопроводимость полупроводников
§ 245. Люминесценция твердых тел
§ 246. Контакт двух металлов по зонной теории
§ 247. Термоэлектрические явления и их применение
§ 248. Выпрямление на контакте металл — полупроводник
§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)
§ 250. Полупроводниковые диоды и триоды (транзисторы)
7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Глава 32 Элементы физики атомного ядра
§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
§ 252. Дефект массы и энергия связи ядра
§ 253. Спин ядра и его магнитный момент
§ 254. Ядерные силы. Модели ядра
§ 255. Радиоактивное излучение и его виды
§ 256. Закон радиоактивного распада. Правила смещения
§ 257. Закономерности -распада
§ 259. Гамма-излучение и его свойства
§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)
§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
§ 262. Ядерные реакции и их основные типы
§ 263. Позитрон. +-Распад. Электронный захват
§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов
§ 267. Понятие о ядерной энергетике
§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Глава 33 Элементы физики элементарных частиц
§ 272. Типы взаимодействий элементарных частиц
§ 274. Гипероны. Странность и четность элементарных частиц
11.3. Кольцо радиусом r=10 см из тонкой проволоки равномерно заряжено с линейной плотностью =10 нКл/м. Определить напряженность поля на оси, проходящей через центр кольца в точке А. удаленной на расстояние а =20 см от центра кольца. [1 кВ/м]
11.4. Шар радиусом R=10 см заряжен равномерно с объемной плотностью =5 нКл/м3. Определить напряженность электростатического поля: 1) на расстоянии r1=2 см от центра шара; 2) на расстоянии r2=12 см от центра шара. Построить зависимость Е(r). [1) 3,77 В/м; 2) 13,1 В/м]
11.5. Электростатическое поле создается положительно заряженной бесконечной нитью с постоянной линейной плотностью = 1 нКл/см. Какую скорость приобретет электрон, приблизившись под действием поля к нити вдоль линии напряженности с расстояния r1=2,5 см до r2=1,5 см? [18 Мм/с]
11.6. Электростатическое поле создается сферой радиусом R=4 см, равномерно заряженной с поверхностной плотностью =1 нКл/м2. Определить разность потенциалов между двумя точками поля, лежащими на расстояниях r1=6 см и r2=10 см. [1,2 В]
11.7. Определить линейную плотность бесконечно длинной заряженной нити, если работа сил поля по перемещению заряда Q =1 нКл с расстояния r1 =10 см до r2 = 5 см в направлении, перпендикулярном нити, равна 0,1 мДж. [8 мкКл/м]
11.8. Пространство между обкладками плоского конденсатора заполнено парафином ( = 2). Расстояние между пластинами d=8,85 мм. Какую разность потенциалов необходимо подать на пластины, чтобы поверхностная плотность связанных зарядов на парафине составляла 0,05 нКл/см2? [500 В]
11.9. Свободные заряды равномерно распределены с объемной плотностью =10 нКл/м3 по шару радиусом R = 5 см из однородного изотропного диэлектрика с диэлектрической проницаемостью =6. Определить напряженности электростатического поля на расстояниях r1 = 2 см и r2 = 10 см от центра шара. [E1=1,25 В/м; E2=23,5 В/м]
11.10. Пространство между пластинами плоского конденсатора заполнено стеклом ( = 7). Расстояние между пластинами d=5 мм, разность потенциалов U=500 В. Определить энергию поляризованной стеклянной пластины, если ее площадь S = 50 см2. [6,64 мкДж]
11.11. Плоский воздушный конденсатор емкостью С=10 пФ заряжен до разности потенциалов U=1 кВ. После отключения конденсатора от источника напряжения расстояние между пластинами конденсатора было увеличено в два раза. Определить: 1) разность потенциалов на обкладках конденсатора после их раздвижения; 2) работу внешних сил по раздвижению пластин. [1) 2 кВ; 2) 5 мкДж]
11.12. Разность потенциалов между пластинами конденсатора U=200 В. Площадь каждой пластины S=100 см2, расстояние между пластинами d=1 мм, пространство между ними заполнено парафином ( = 2). Определить силу притяжения пластин друг к другу. [3,54 мН]
Глава 12 Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электрический ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.
Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.
Количественной мерой электрического тока служит сила тока I скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока
где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единила силы тока — ампер (А).
Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:
Выразим силу и плотность тока через скорость v упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne v S dt. Сила тока
а плотность тока
(96.1)
Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).
Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.
(96.2)
где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с вектором j угол ).
§ 97. Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.
Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:
(97.1)
Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).
Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как
где Е — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна
(97.2)
Разделив (97.2) на Q0, получим выражение для э. д. с., действующей в цепи:
т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1—2, равна
(97.3)
На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна
Работа, совершаемая результирующей силой над зарядом Q0 на участке 1—2, равна
Используя выражения (97.3) и (84.8), можем записать
(97.4)
Для замкнутой цепи работа электростатических сил равна нулю (см. § 83), поэтому в данном случае
Напряжением U на участке 1—2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (97.4),
Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.
§ 98. Закон Ома. Сопротивление проводников
Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
(98.1)
где R — электрическое сопротивление проводника. Уравнение (98.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника. Формула (98.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А. Величина
называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.
Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:
(98.2)
где — коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного электрического сопротивления — омметр (Омм). Наименьшим удельным сопротивлением обладают серебро (1,610–8 Омм) и медь (1,710–8 Омм). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,610–8 Омм), но зато обладает меньшей плотностью по сравнению с медью.
Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (98.2) в закон Ома (98.1), получим
(98.3)
где величина, обратная удельному сопротивлению,
называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U/l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (98.3) можно записать в виде
(98.4)
Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в виде
(98.5)
Выражение (98.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:
где и 0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при t и 0°С, — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температурная зависимость сопротивления может быть представлена в виде
где Т — термодинамическая температура.
Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.
На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.
§ 99. Работа и мощность тока. Закон Джоуля — Ленца
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока
(99.1)
Если сопротивление проводника R, то, используя закон Ома (98.1), получим
(99.2)
Из (99.1) и (99.2) следует, что мощность тока
(99.3)
Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Втч) и киловатт-час (кВтч). 1 Втч — работа тока мощностью 1 Вт в течение 1 ч; 1 Втч=3600 Bтc=3,6103 Дж; 1 кВтч=103 Втч= 3,6106 Дж.
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,
(99.4)
Таким образом, используя выражения (99.4), (99.1) и (99.2), получим
(99.5)
Выражение (99.5) представляет собой закон Джоуля—Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.*
* Э. X. Ленц (1804—1865) — русский физик.
Выделим в проводнике элементарный цилиндрический объем dV=dSdl (ось цилиндра совпадает с направлением тока), сопротивление которого По закону Джоуля — Ленца, за время dt в этом объеме выделится теплота
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна
(99.6)
Используя дифференциальную форму закона Ома (j=Е) и соотношение =1/, получим
(99.7)
Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника.
Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.
§ 100. Закон Ома для неоднородного участка цепи
Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1—2 обозначим через а приложенную на концах участка разность потенциалов — через 1 —2.