Файл: Исследование суточных вариаций поровой активности радона в поверхностных грунтах удк 550. 42 546. 296 551. 51.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.10.2023

Просмотров: 273

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

PLANNED RESULTS OF THE DEVELOPMENT OF THE PLO/OPOP

SYMBOLS AND ABBREVIATIONS

Introduction

1 Chapter

Areas applications quantities density flow radon

Climatology. Radon - as a tracer of air exchangeprocesses

Static and dynamic methods measurements

Chapter

Dynamics of radon activity and its decay products inside the storage chamber

Conclusion on the chapter The field of β-radiation at depths of 0.5 and 1 m quite well reflects the dynamics of the radon subsoil field, the daily variation is well traced. However, the daily course of the β-field in some periods has a shift compared to the daily course of the radon field, i.e. the time of the onset of the maximum in the dynamics of the β-field is ahead/late by several hours.The dynamics of RA of radon in soil air at the same depth, but at a distance of 1.5–2 m, can differ significantly. The maxima in the daily course of RA of radon at different depths occur at different times, at a depth of 0.5 m - approximately at 16-18 hours, and at a depth of 1 m - at 24 hours. The delay in some periods reaches 8 hours.Correlation analysis between the radon field and meteorological values revealed only a significant relationship with the amount of rainfall.A 2-month experiment on the calibration of β- and α-radiation detectors installed in wells did not make it possible to unambiguously determine the correction factors for converting to units of volumetric activity. As a result, it was decided to conduct a second experiment with some adjustment of the experimental design, as well as refinement of the VA detector installation scheme. The requirements for the conditions for calibrating the readings of the VA detector in units of RA of radon are as follows: Wells with VA detectors installed inside should not be opened during calibration, i.e. tubes for pumping air from the well, which are cyclically connected to the radon radiometer, should be installed at least a day before the start of the experiment. The VA detectors should not be removed from the well or moved in the well during calibration, as this leads to a distortion of the time series of data. To calculate the coefficient of decrease in the range of diurnal variations after the start of pumping air from the well, it is necessary to record data from the VA detector at least a week before the start of the experiment, and after its completion. The development of the project infrastructure made it possible to analyze the results of the calibration of soil detectors by 0.5 and 1 мusing a radon radiometer, which showed the following:at depth, 0,5 мthe temporal changes in the α- and β-fields are practically synchronous, but have different amplitudes ;in the daily course of radon VA at different depths, the maxima at depth 0,5 мare recorded at 16–18 h, and at depth 1 мat 24 h; the delay in time of the moments of the onset of maxima in radon VA is

Chapter 4 Financial management, resource efficiency and resource saving

Consumer portrait

SWOT analysis

Project Initiation

Project Participants

Project Schedule

Scientific and technical research budget

Basic salary

Additional salary

Overhead costs

Conclusion

Social responsibility

Industrial safety

Artificial lighting

Electrical safety

Static electricity

Safety in emergencies

Conclusions to the section social security

List of sources used

application 1


plan;

  • observance of fire safety rules, norms in the design of buildings,

in the installation of electrical wires and equipment, heating, ventilation, lighting;

  • correct placement of equipment;

  • timely preventive inspection, repair and testing of equipment.

In the event of an emergency it is necessary to: Inform the management (duty officer);

Call the appropriate emergency service or the Ministry of Emergency Situations - tel. 112;

Take measures to eliminate the accident in accordance with the instructions.
    1. 1   ...   24   25   26   27   28   29   30   31   32

Conclusions to the section social security


The industrial safety technique has been developed and analyzed in the course of this scientific and technical research.

Measures to create the necessary microclimate conditions have already been introduced in this room. The noise in the room is in accordance with the established norms. Electrical safety measures are also carried out in this laboratory.

The chapter discusses harmful and dangerous factors:

  • microclimate [79];

  • noise [78];

  • illumination [82];

  • fire hazard [86];

  • electrical safety [89];

Also considered are the causes and means of protection, emergencies and emergencies, measures to prevent them, measures to eliminate their consequences. The radiation safety of work and the potential danger from electromagnetic radiation were considered separately.

The audience in question is assigned to class B for fire hazard

[87] and 1 for the electrical safety [83].

List of sources used




  1. Популярная библиотека химических элементов / под ред. И.В. Петряно-Соколов. – 3 изд. - М.: Наука, 1983. - Т. 2. Серебро – Нильсборий. 572с.

  2. Бэгнал К. Химия редких радиоактивных элементов. Полоний

- актиний,пер. с англ., М.: Изд-во иностр. лит-ры, 1960. 256 с.

  1. Перцов Л.А. Ионизирующие излучения биосфер. М.: Атомиздат, 1973.– 288 с.

  2. Химическая энциклопедия: в 5 т. / под ред. Н.С. Зефиров. М.:Советская энциклопедия, 1995. Т. 4. 639 с.

  3. Соловьев Ю.И., Петров Л.П. Вильям Рамзай (1852-1916). М.: Наука,1971. 243 с.

  4. Гусаров И.И. Радонотерапия. М.: Медицина, 1974. 160 с

  5. Крисюк Э.М. Радиационный фон помещений. – М.: Энергоатомиздат, 1989. 130 с.

  6. Gamma-Ray Spectrum Catalogue // Региональная объединенная компьютерная сеть образования, науки и культуры Санкт - Петербурга.2009.URL:http://www.atom.nw.ru/catalog/nucli des.htm (дата обращения: 14.02.2019).

    1. BetaSpecALL FINAL3.xls // The Radiation Dose Assessment Resource. 2009. URL: http://www.doseinfo-radar.com (дата обращения: 14.02.2019).

    2. Источники, эффекты и опасность ионизирующей радиации. ДокладНКДАР ООН за 1988 г. в 2-х томах. М.: Мир, 1992. 560c

    3. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99): 2.6.1. Ионизирующее излучение, радиационная безопасность СП 2.6.1. 799-99. М.: Минздрав России, 2000. 98 с.

    4. Нормы радиационной безопасности (НРБ-99): Гигиенические нормативы СП 2.6.1.758-99. М.: Центр санитарно- эпидемиологического нормирования, гигиенической сертификации иэкспертизы Минздрава России, 1999. – 116 с.

    5. Авдуалиев А.К., Войтов Г.И., Рудаков В.П. Радоновый предвестник некоторых сильных землетрясений Средней Азии // ДАН СССР. 1986.– Т. 291. 4. C. 924–927.

    6. Thomas D.M. Geochemical precursors to seismic activity // Pure Appl. Geophys. 1988. V. 126. P. 241–266.

    7. Monnin M.M. Radon over volcanic and seismic areas // In M.V. Frontasyeva et al. eds. Radionuclides and heavy metals in Environment. Kluwer Academic Publishers, 2001. P. 319–330.

    8. Fleischer R.L. Radon and earthquake prediction // Radon Measurements by Etched Track Detectors: Applications in Radiation Protection, Earth Sciencesand the Environment / eds S.A. Durrani, R. Ilić. Singapore: World Scientific, 1997. P. 285– 299.

    9. Steinitz G., Begin Z.B. and Gazit-Yaari N.A. Statistically Significant Relation between Rn Flux and Weak Earthquakes in the Dead Sea Rift Valley// Geology. – 2003. – V. 31. – P. 505–508.

    10. Prospero J.M., Carlson T.N., Radon-222 in the North Atlantic trade winds; its relationship to dust transport from Africa // Science. – 1970. V. 167. P.974–977.

    11. Karol I.L. Radioisotopes and global transport in the atmosphere


// Israel Program for Scientific Translations. – Jerusalem, 1974. – P. 44–217.

    1. Larson R., Bressan P. Radon-222 as an indicator of continental air masses and air mass boundaries over ocean areas / eds. T. Ysell, W. Lodwer. Natural radiation environment 3, National Technical Information Service. – Virginia:Springfield, 1980. V. 1. P. 308.

    2. Larson R., Bressan D. Air mass characteristics over coastal areas as determined by radon measurements // Second Conf. on Coastal Meteorology.Amer. Meteor. Soc. – Los Angeles, CA, 1980. – P. 94– 100.

    3. Wilkniss P.E., Larson R.E., Bressan P.J., Steranka J. Atmospheric radon andcontinental dust near the automatic and their correlation with air mass trajectories // J. Appl. Meteorol. – 1974. – V. 13. – P. 512– 520.

    4. Rasch P.J., Feichter J., Law K., Mahowald N. et al. A comparison of scavenging and deposition processes in global models: results from theWCRP Cambridge Workshop of 1995 // Tellus. – 2000. – V. 52B. – P. 1025–1056.

    5. Szegvary T., Leuenberger M.C., Conen F. Predicting terrestrial 222Rn flux using gamma dose rate as a proxy // Atmos. Chem. Phys. – 2007. V. 7. P.2789–2795.

    6. Druilhet, A., Guedalia, D., Fontan J., Laurant J. Study of radon- 220 emanation deduced from measurement of vertical profiles in the atmosphere// J. Geophys. Res. – 1972. V. 77. – P. 6508–6514.

    7. Hsu S.A., Larson R.E., Bressan D.J. Diurnal variation of radon and mixing heights along a coast: a case study // J. Geophys. Res. – 1980. V. 85. P. 4107–4112.

    8. Guedalia D.A. Ntsila A., Druilhet A., Fontan J. Monitoring of the atmospheric stability above an urban and suburban site using sodar and radonmeasurements // J. Appl. Meteorol. – 1980. – V. 19. – P. 839– 845.

    9. Kataoka T., Yunoki E., Shimizu M., Mori T. et al. Diurnal Variation in Radon Concentration and Mixing-Layer Depths // Bound.-Layer Meteorol. 1998. –V. 89. 2. P. 225–250.

    10. Фирстов П.П., Паровик Р.И., Яковлева В.С., Малышева О.П.

Связь скорости адвекции и плотности потока радона с сильными землетрясениями южной Камчатки в 2000-2008 гг. // Солнечно- земные связи и физика предвестников землетрясений: Тезисы докладов V международной конференции. – ИКИР ДВО РАН, Петропавловск- Камчатский, Камчатский край, 2010. C. 50–51.

    1. Об основах охраны труда в Российской Федерации: Федеральный законот 17 июля 1999 №181 ФЗ // Российская газ.


– 1999. 24.07

    1. ГОСТ 12.0.003-74. ССБТ Опасные и вредные факторы. Классификация[Текст]. – Взамен ГОСТ 12.0.002-74; введ. 1976- 01-01. М.: ИПК: Изд- во стандартов, 2002.

    2. ГОСТ 12.1.038-82. ССБТ. Электробезопасность [Текст]. Введ. 1983- 01-07. М.: Издательство стандартов, 1988.

    3. СНиП 21-01-97. Пожарная безопасность зданий и сооружений [Текст].– Взамен СНиП 2.01.02-85; введ. 1998-01-01.

М.: Госстрой России, ГУП ЦПП, 1999.

    1. ИНСТРУКЦИЯ № 5-13 по охране труда для работников, занятых пайкой и лужением изделий паяльником, кафедры Прикладная физика (ПФ) (ТИ Р М-075-2003).

    2. Нормы радиационной безопасности (НРБ-99/2009). СП 2.6.1.2523-09.

    3. «Общие положения обеспечения безопасности радиационных источников» (НП-038-11), утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 05.03.2011 г № 104.

    4. Сердюкова А.С., Капитанов Ю.Т. Изотопы радона и короткоживущие продукты их распада в природе. М.: Атомиздат, 1979. 294 c.

    5. Защита от радона-222 в жилых зданиях и на рабочих местах. Публикация 65 МКРЗ.  М.: Энергоатомиздат, 1995. 78 с.

    6. Определение плотности потока радона на участках застройки. Временные методические указания. ВМУР-97 // АНРИ. 1996/97. № 5. С. 8–14.

    7. Яковлева В.С., Каратаев В.Д. Плотность потока радона с поверхности земли как возможный индикатор изменений напряженно- деформированного состояния геологической среды


// Вулканология и сейсмология. 2007. 1. С. 74–77.

    1. Yakovleva V.S. The radon flux density from the Earth’s surface as an indicator of a seismic activity // 7th International Conference on gas geochemistry (ICGG7): Proc. – Freiberg, Germany, 2003. – P. 28– 30.

    2. Яковлева В.С. Анализ методов измерения плотности потока радона и торона с поверхности земли // АНРИ. 2010. – 3. С. 23–30.

    3. Baver, L. D., 1956. Soil Physics, 3rd ed. New York, John Wiley and Sons, pp 209-222.

    4. Bakulin, V. N., 1969. Dependance of Radon Exhalation and Its Concentrationin the Soil on Meteorological Conditions (in Russian), Uch. Zap. Kirov. Gas.Pedagog. Inst., 30:70-79.

    5. Bernhardt, D. E., F. B. Jones and R. F. Kaufmann, 1975. Radon Exhalation from Uranium Mill Tailings Piles: Description and Verification of the Measurement Method, U. s·. Environmental Protection Agency, Technical Note ORP/LV-75-7(A).

    6. Duwe, M. F., 1976. The Diurnal Variation in Radon Flux from the Soil due to Atmospheric Pressure Change and Turbulence. PhD Thesis, University of Wisconsin - Madison.

    7. Clemer1ts, W. E., S. Garr, and M. L. Marple, 1973. Uranium Mill

Tailings Piles as Sources of Atmospheric Radon-222, Natural Radiation EnvironmentIII, pp 1559-1583.

    1. Clements, W. E. and M. H. Wilkening, 1974. Atmospheric Pressure Effects on 222Rn Transport Across the Earth-air Interface, Journal of Geophysical Research, 79:5025-5029.

    2. Depth and seasonal variations for the soil radon-gas concentration levels at Wadi Naseib area / Korany K. A., Shata A. E., Hassan S. F., Nagdy MSE // Sinai, Egypt, 2013.

    3. Estimation of the Global 222Rn Flux Density from the Earth’s Surface / Shigekazu Hirao, Hiromi Yamazawa, Jun Moriizumi // 2010.

    4. Daily and seasonal variations in radon activity concentration in the soil air / Monika Mullerova, Karol Holy, Martin Bulko // 2014.

    5. Suppression of radon exhalation from soil by covering with clay- mixed soil / Masakazu Ota, Takao Iida, Hiromi Yamazawa, Shuichi Nagara, Yuu Ishimori, Kazuhiko Sato, Takayuki Tokizawa // 2012.

    6. Radon chaotic regime in the atmosphere and soil / V Radolic, B Vukovic, D Stanic, J Planinic // 2005.

    7. Meteorological parameters contributing to variability in 222Rn activity concentrations in soil gas at a site in Sapporo, Japan / Fujiyoshi R., Sakamoto K., Imanishi T., Sumiyoshi T., Sawamura S., Vaupotic J., Kobal I. // 2006.

    8. Continuous measurement of radon exhalation rate of soil in Beijing