Файл: 1. Свет. Интерференция света. Условие максимума и минимума интерференции.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 242
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
3. Интерференция света в тонких пленках или полосы ровного наклона.
6.Дифракция Френеля на круглом отверстии и диске.
7.Дифракция Фраунгофера на прямоугольной щели.
8. Дисперсия и разрешающая сила спектрального прибора.
Оптическая активность веществ. @
Поляризация света при отражении и преломлениина границе раздела
двух диэлектрических сред. Закон Брюстера.
4. 3. Поляризация света при двойном лучепреломлении.
6. 1. Характеристики теплового излучения. @
Волновая функция, её статистический смысл. Задание состояния микрочастицы.
28. Состав ядра. Характеристики ядра. Размеры ядер.
T ≥ 5·103 К) и далее в ультрафиолетовую область при повышении температуры тела, что подтверждается экспериментально. Максимум энергии излучения Солнца приходится примерно на 470 нм (зелено-голубая область спектра), что соответствует температуре наружных слоев Солнца около 6200 К (если рассматривать Солнце как абсолютно черное тело).
15. Ультрафиолетовая катастрофа. Постоянная Планка.
После установления законов излучения стало очевидно, что первоочередная задача теории теплового излучения состоит в нахождении вида функции Кирхгофа, т.е. выяснение спектрального состава равновесного излучения абсолютно черного тела. Решение этой задачи вышло далеко за рамки теории излучения и сыграло огромную роль во всем дальнейшем развитии физики, т.к. привело к установлению квантового характера излучения и поглощения энергии атомами и молекулами.
Существование на экспериментальных кривых (рис. 6.2) максимумов свидетельствует о том, что энергия излучения черного тела распределена по его спектру неравномерно – черное тело почти не излучает в области очень малых и очень больших частот.
В 1900 году эту проблему пытался решить знаменитый английский физик, барон Д.У. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Равновесное электромагнитное излучение в замкнутой полости c постоянной температурой стенок он рассматривал как систему стоячих электромагнитных волн различных частот в 3-х измерениях. Колебания с различными частотами совершаются независимо друг от друга и каждой частоте соответствует своя колебательная степень свободы. Несколько позже эту идею подробно развил английский физик и астроном Д.Х.Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от частоты и температуры T:
Это соотношение называют формулой Релея–Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн или малых частот (рис. 6.3). Кроме того, из него следует абсурдный вывод о том, что интегральная светимость
R(T) черного тела должна обращаться при коротких (ультрафиолетовых) длинах волн в бесконечность, что было названо «ультрафиолетовой катастрофой» и что противоречило реально наблюдаемым данным.
Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена немецким физиком М. Планком на основе новой идеи, положившей начало квантовой физике.
В своих расчетах Планк выбрал наиболее простую модель излучающей системы – совокупности гармонических осцилляторов - атомов со всевозможными собственными частотами. Планк предположил, что энергия осциллятора не может принимать значения, меньшего некоторой минимальной величины , а любое другое значение энергии осциллятора кратно .
Данная минимальная порция энергии была названа квантом. Планк сделал еще одно предположение, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. По теории Планка, энергия кванта прямо пропорциональна частоте света:
= hν,
где h – так называемая постоянная Планка, равная 6,626·10–34 Дж·с.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для излучательной способности абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.
.
Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При hν << kT формула Планка переходит в формулу Релея–Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики. Теоретически вывод своей формулы Планк изложил 14 декабря 1900 г. на заседании немецкого физического общества. Этот день стал датой рождения квантовой физики.
Таким образом, Планк выдвинул гипотезу, которая в дальнейшем блестяще подтвердилась и в других экспериментах, согласно которой энергия атома - осциллятора может изменяться не непрерывно, а только дискретно - квантами. Энергия кванта пропорциональна частоте колебаний, излучение и поглощение энергии при тепловом излучении тел квантовано.
16. Рентгеновское излучение. Рентгеновская трубка.
Рентгеновское излучение.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м)
В 1895 г. немецкий физик В.Рентген обнаружил, что при электрическом разряде в вакуумной трубке возникает невидимое для глаз излучение, обладающее высокой проникающей способностью. Излучение вначале было названо Х-лучами, а затем получило название рентгеновского. Оно занимает диапазон длин волн от 2∙10-9 до 6∙10-12м. Рентгеновские лучи вызывают флуоресценцию некоторых веществ, ионизацию газов, оказывают фотохимическое и биологическое воздействие на тела
Рентгеновская трубка
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.
17.Фотоэффект. Законы фотоэффекта. Гипотезы Эйнштейна о корпускулярно-волновых свойствах света.
Явление вырывания электронов из вещества под действием света (электромагнитного излучения) называют внешним фотоэффектом.
3. Максимальная начальная скорость вырываемых электронов определяется частотой света и не зависит от интенсивности падающего светового потока
Закон сохpанения энергии позволяет написать пpостое соотношение, связывающее скоpость фотоэлектpонов с частотой поглощаемого света:
hv=А+Ek,
где hv - энергия, которую отдаёт фотон электрону вещества, А- работа выхода электрона из вещества, Ek = mv2/2 - кинетическая энергия освобождённого электрона. Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта. Теория Эйнштейна объясняет все законы Столетова.
Первый закон следует из того, что интенсивность света пропорциональна числу фотонов падающих за единицу времени на единичную поверхность, а каждый фотон вырывает примерно один электрон. Поэтому увеличение числа фотонов вызывает возрастание числа испущенных в единицу времени электронов. При этом в эксперименте с фотоэлементом, сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества.
Также становится ясно, что фотоэффект могут вызывать только фотоны соответствующие свету достаточно высокой частоты. Если h < A, то энергии фотона не хватит на вырывание электронов и они из поверхности металла не испускаются. Это означает, что фотоэффект будет происходить только при h > A, т.е. существует некоторая минимальная частота
0 = A/h, при которой начинается это явление (или граничная частота фотоэффекта).
Из формулы Эйнштейна следует также третий закон Столетова, так как видно что, максимальная начальная скорость электронов зависит только от частоты и материала катода (А). Увеличение интенсивности света вызывает лишь возрастание числа испущенных в единицу времени электронов, но не влияет на их энергию.
Опыты по экспериментальной проверке уравнения Эйнштейна были проведены Милликеном на установке подобной установке Столетова. Метод Милликена заключается в исследовании зависимости значения задерживающего потенциала Uз от частоты света и его интенсивности. Испущенные электроны с энергией Ek = h - А движутся к аноду, если потенциал Uз такой, что eUз > Ek, то ни один из электронов не может достичь коллектора и фототок исчезает, что позволяет измерить Uз. Согласно Эйнштейну, Uз = (h - А)/e и не зависит от интенсивности света. Эксперименты подтвердили все выводы теории Эйнштейна и позволили найти величину h, которая совпала с величиной постоянной Планка. Этот эксперимент подтвердил два предположения:
Фотоэффект обнаруживают практически все вещества, даже такие, как лед и вода, если освещать их ультрафиолетовым светом. Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Они применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.
До сих пор мы рассматривали случай, когда электрон получает энергию только от одного фотона. Такие процессы называются однофотонными. С изобретением лазеров были получены недостижимые ранее мощности световых пучков. Это дало возможность осуществить многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов (N=2, 3, 4, 5, 6). Формула Эйнштейна в случае многофотонного фотоэффекта имеет вид:
Nhv=А+Ek.
Соответственно 0 = A/hN и красная граница фотоэффекта смещается в сторону более коротких частот.
15. Ультрафиолетовая катастрофа. Постоянная Планка.
После установления законов излучения стало очевидно, что первоочередная задача теории теплового излучения состоит в нахождении вида функции Кирхгофа, т.е. выяснение спектрального состава равновесного излучения абсолютно черного тела. Решение этой задачи вышло далеко за рамки теории излучения и сыграло огромную роль во всем дальнейшем развитии физики, т.к. привело к установлению квантового характера излучения и поглощения энергии атомами и молекулами.
Существование на экспериментальных кривых (рис. 6.2) максимумов свидетельствует о том, что энергия излучения черного тела распределена по его спектру неравномерно – черное тело почти не излучает в области очень малых и очень больших частот.
В 1900 году эту проблему пытался решить знаменитый английский физик, барон Д.У. Релей, который в основу своих рассуждений положил теорему классической статистической механики о равномерном распределении энергии по степеням свободы в состоянии термодинамического равновесия. Эта теорема была применена Релеем к равновесному излучению в полости. Равновесное электромагнитное излучение в замкнутой полости c постоянной температурой стенок он рассматривал как систему стоячих электромагнитных волн различных частот в 3-х измерениях. Колебания с различными частотами совершаются независимо друг от друга и каждой частоте соответствует своя колебательная степень свободы. Несколько позже эту идею подробно развил английский физик и астроном Д.Х.Джинс. Таким путем удалось получить зависимость излучательной способности абсолютно черного тела от частоты и температуры T:
Это соотношение называют формулой Релея–Джинса. Оно согласуется с экспериментальными данными только в области достаточно длинных волн или малых частот (рис. 6.3). Кроме того, из него следует абсурдный вывод о том, что интегральная светимость
R(T) черного тела должна обращаться при коротких (ультрафиолетовых) длинах волн в бесконечность, что было названо «ультрафиолетовой катастрофой» и что противоречило реально наблюдаемым данным.
Таким образом, безупречный с точки зрения классической физики вывод приводит к формуле, которая находится в резком противоречии с опытом. Стало ясно, что решить задачу о спектральном распределении излучения абсолютно черного тела в рамках существующих теорий невозможно. Эта задача была успешно решена немецким физиком М. Планком на основе новой идеи, положившей начало квантовой физике.
В своих расчетах Планк выбрал наиболее простую модель излучающей системы – совокупности гармонических осцилляторов - атомов со всевозможными собственными частотами. Планк предположил, что энергия осциллятора не может принимать значения, меньшего некоторой минимальной величины , а любое другое значение энергии осциллятора кратно .
Данная минимальная порция энергии была названа квантом. Планк сделал еще одно предположение, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. По теории Планка, энергия кванта прямо пропорциональна частоте света:
= hν,
где h – так называемая постоянная Планка, равная 6,626·10–34 Дж·с.
На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для излучательной способности абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.
.
Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.
Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными. Из формулы Планка можно вывести законы Стефана–Больцмана и Вина. При hν << kT формула Планка переходит в формулу Релея–Джинса.
Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики. Теоретически вывод своей формулы Планк изложил 14 декабря 1900 г. на заседании немецкого физического общества. Этот день стал датой рождения квантовой физики.
Таким образом, Планк выдвинул гипотезу, которая в дальнейшем блестяще подтвердилась и в других экспериментах, согласно которой энергия атома - осциллятора может изменяться не непрерывно, а только дискретно - квантами. Энергия кванта пропорциональна частоте колебаний, излучение и поглощение энергии при тепловом излучении тел квантовано.
16. Рентгеновское излучение. Рентгеновская трубка.
Рентгеновское излучение.
Рентге́новское излуче́ние — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м)
В 1895 г. немецкий физик В.Рентген обнаружил, что при электрическом разряде в вакуумной трубке возникает невидимое для глаз излучение, обладающее высокой проникающей способностью. Излучение вначале было названо Х-лучами, а затем получило название рентгеновского. Оно занимает диапазон длин волн от 2∙10-9 до 6∙10-12м. Рентгеновские лучи вызывают флуоресценцию некоторых веществ, ионизацию газов, оказывают фотохимическое и биологическое воздействие на тела
Рентгеновская трубка
Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z — атомный номер элемента анода, A и B — константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, — из молибдена или меди.
17.Фотоэффект. Законы фотоэффекта. Гипотезы Эйнштейна о корпускулярно-волновых свойствах света.
Явление вырывания электронов из вещества под действием света (электромагнитного излучения) называют внешним фотоэффектом.
А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
-
Количество электронов, вырываемых с поверхности металла в секунду, прямо пропорционально интенсивности светового потока Е (количеству энергии падающей со светом за единицу времени на единичную поверхность катода) и не зависит от частоты света. -
Для каждого вещества существует определенная для данного вещества минимальная частота 0, при которой еще возможен фотоэффект. Если частота света меньше минимальной частоты, то фотоэффект не происходит (0 называется «красной границей фотоэффекта», так как для многих металлов 0 лежит в области красного света.).
3. Максимальная начальная скорость вырываемых электронов определяется частотой света и не зависит от интенсивности падающего светового потока
Закон сохpанения энергии позволяет написать пpостое соотношение, связывающее скоpость фотоэлектpонов с частотой поглощаемого света:
hv=А+Ek,
где hv - энергия, которую отдаёт фотон электрону вещества, А- работа выхода электрона из вещества, Ek = mv2/2 - кинетическая энергия освобождённого электрона. Это уравнение называется уравнением Эйнштейна для внешнего фотоэффекта. Теория Эйнштейна объясняет все законы Столетова.
Первый закон следует из того, что интенсивность света пропорциональна числу фотонов падающих за единицу времени на единичную поверхность, а каждый фотон вырывает примерно один электрон. Поэтому увеличение числа фотонов вызывает возрастание числа испущенных в единицу времени электронов. При этом в эксперименте с фотоэлементом, сила фототока пропорциональна интенсивности поглощённого света, то есть числу фотонов, способных выбить электроны из вещества.
Также становится ясно, что фотоэффект могут вызывать только фотоны соответствующие свету достаточно высокой частоты. Если h < A, то энергии фотона не хватит на вырывание электронов и они из поверхности металла не испускаются. Это означает, что фотоэффект будет происходить только при h > A, т.е. существует некоторая минимальная частота
0 = A/h, при которой начинается это явление (или граничная частота фотоэффекта).
Из формулы Эйнштейна следует также третий закон Столетова, так как видно что, максимальная начальная скорость электронов зависит только от частоты и материала катода (А). Увеличение интенсивности света вызывает лишь возрастание числа испущенных в единицу времени электронов, но не влияет на их энергию.
Опыты по экспериментальной проверке уравнения Эйнштейна были проведены Милликеном на установке подобной установке Столетова. Метод Милликена заключается в исследовании зависимости значения задерживающего потенциала Uз от частоты света и его интенсивности. Испущенные электроны с энергией Ek = h - А движутся к аноду, если потенциал Uз такой, что eUз > Ek, то ни один из электронов не может достичь коллектора и фототок исчезает, что позволяет измерить Uз. Согласно Эйнштейну, Uз = (h - А)/e и не зависит от интенсивности света. Эксперименты подтвердили все выводы теории Эйнштейна и позволили найти величину h, которая совпала с величиной постоянной Планка. Этот эксперимент подтвердил два предположения:
-
свет состоит из частиц – квантов; -
энергия кванта равна h.
Фотоэффект обнаруживают практически все вещества, даже такие, как лед и вода, если освещать их ультрафиолетовым светом. Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Они применяется в фотометрии для измерения силы света, яркости, освещенности, в кино для воспроизведения звука, в фототелеграфах и фототелефонах, в управлении производственными процессами.
До сих пор мы рассматривали случай, когда электрон получает энергию только от одного фотона. Такие процессы называются однофотонными. С изобретением лазеров были получены недостижимые ранее мощности световых пучков. Это дало возможность осуществить многофотонный фотоэффект, в ходе которого электрон, вылетающий из металла, получает энергию не от одного, а от N фотонов (N=2, 3, 4, 5, 6). Формула Эйнштейна в случае многофотонного фотоэффекта имеет вид:
Nhv=А+Ek.
Соответственно 0 = A/hN и красная граница фотоэффекта смещается в сторону более коротких частот.