Файл: Литература 25 Краткая история развития эргономики 27.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 1032

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




предметного содержания. Причем объединение координированных двигательных структур на каждом уровне происходит с помощью соответствующих, зрительно выделенных свойств внешней среды. Необходимо установить, каким образом и на основании чего формируется новая для данного индивида деятельность, какова ее функциональная структура и каковы компоненты, ее состав­ляющие.

Для ответа на поставленные вопросы в экспериментальной ситуации была использована инверсия как средство разрушения сложившегося навыка, при введении которой перцептивные и мо­торные поля, каждое в отдельности, по сути дела не претерпевали никаких изменений. Нарушалось лишь соответствие между дви­жением манипулятора и перемещением пятна на экране, иначе го­воря, в инверсии нарушалось привычное соотношение перцептив­ного и моторного полей, что, естественно, вызывало разрушение сложившегося в условиях совместимости сенсомоторного образа пространства, т. е. средства стали неадекватны цели. Использова­ние инверсии дало возможность более полно проследить этапы построения нового сенсомоторного образа рабочего пространства [18, 19].

Остановимся подробнее на строении фазической стадии прост­ранственного действия, которая при введении инверсии из прост­ранственной, единой и целенаправленной превратилась в набор большого количества разнонаправленных движений, перемежаю­щихся либо полными остановками, либо значительными замедле­ниями. Каждая такая остановка говорит о том, что, сделав небольшое движение, испытуемый контролирует себя и намечает (программирует) свой дальнейший путь (рис. 13).

По сути дела, в структуре фазы при переходе на один элемент матрицы можно насчитать 3—8 полных циклов, каждый из кото­рых состоит из своих собственных стадий программирования, реализации и контролирова­ния. Иначе говоря, фазическая стадия целостного дей­ствия распалась на целый ряд разнонаправленных дви­жений, а если учесть, что такие разнонаправленные с большой амплитудой дви­жения, как бы пронизываю­щие оперативное простран­ство, зарегистрированы по каждой составляющей X, Y, Z пространственного действия, то станет ясно, насколько хаотично и бес­порядочно выглядит это действие, которое по сути дела нельзя назвать дейст­вием, 'поскольку оно не целе­направлено и раздроблено. Его можно представить себе как искусственно соединен­ные цепи отдельных опера­ций, каждая из которых имеет определенные направ­ления, скорость и точку при­ложения. Отсюда совершен­но ясно, что исконная функ­ция движения — исполнительная — трансформируется на этом этапе овладения действием в функцию познавательную, исследо­вательскую, ориентирующую.


Таким образом, на основе активных действий, прощупывающих рабочее пространство во всех направлениях, функция которых не исполнительная, а исследовательская, начинает строиться новый сенсомоторный образ пространства. На первом этапе построения сенсомоторного образа формируется достаточно обобщенный образ ситуации в целом (рис. 14, кривая 1), который можно назвать этапом построения образа конкретной ситуации.

Следующий этап характеризуется большой временной протя­женностью, занимая примерно несколько десятков реализаций.



Этот этап характеризуется прощупывающими движениями, иду­щими в направлении цели (рис. 14, кривая 2). Здесь уже нет раз­нонаправленных движений большой амплитуды. Движение от одного элемента матрицы к другому как бы делится на ряд последовательных операций, в каждой из которых отчетливо вы­деляются программирующая, реализующая и контролирующая ста­дии. Испытуемый как бы квантует воображаемую траекторию на мелкие отрезки, где нарастание скорости осуществления действия сменяется полными остановками. И квантов тем больше, чем менее освоен образ пространства. Необходимо отметить, что увеличение и падение скорости идет изолированно по каждой составляющей X, Y, Z движения. Это свидетельствует о том, что и на этом этапе освоения образа действие планируется не симультанно (простран­ственно) , а сукцессивно, изолированно по каждой координате. Более того, даже по отдельной координате оно не планируется полностью, а делится на кванты, где окончание предыдущего слу­жит началом следующего.

Единое действие на этом этапе превращено в цепь последова­тельных, пробующих операций, идущих в направлении заданной цели и в конце концов достигающих ее. Подобные действия необ­ходимы для подгонки сложившегося в общих чертах образа к кон­кретным двигательным задачам. Кроме того, видимо, они направ­лены на нахождение масштабного соответствия движения руки и местоположения элемента матрицы на экране.

Таким образом, второй этап овладения сенсомоторным прост­ранством можно назвать этапом построения образа реальных исполнительных действий.

Следующий этап освоения образа сенсомоторного пространства может быть отнесен к образной, ориентирующей части действия только на самых начальных этапах своего формирования (рис. 14, кривая 3). Он характеризуется целенаправленными целостными действиями, функция которых в основном направлена на слияние уже построенного образа ситуации с образом реальных исполни­тельных действий. Функция эта является достаточно сложной, она требует не механического соединения, а качественного проникно­вения одного в другое и на основе этого построения симультанно­го, единого для данных условий сенсомоторного образа рабочего пространства. На его основе затем будет совершенствоваться уже собственно-исполнительная часть действия. Наличие такого еди­ного ориентирующего образа открывает на этом этапе возмож­ность для формирования и совершенствования программы дейст­вия, первые попытки построения которой уже наметились на этапе построения образа исполнительных действий.



Как возможно соединение регулирующего и исполнительного компонентов, каждый из которых обладает большим числом сте­пеней свободы? Каков процесс ограничения числа степеней свобо­ды в обоих звеньях двигательного акта? Эти вопросы возникают применительно к анализу сформировавшегося двигательного акта,но еще большую остроту они приобретают по отношению к про­цессу его формирования, по отношению к процессу овладения человеком как традиционными, так и новыми орудиями трудовой деятельности.

Исследование характеристик когнитивных компонентов, а так­же изучение процесса их формирования чрезвычайно важны, так как именно они связывают ориентирующие и исполнительные ком­поненты деятельности.

Сравнительный качественный и количественный анализ харак­теристик движений руки и глаз, полученный на разных стадиях овладения двигательными навыками, позволил выявить общие закономерности изменения исследуемых параметров [21]. По мере овладения двигательным навыком сокращается как общее время выполнения действия, так и длительность каждой выделенной ста­дии целостного действия, а также продолжительность периода глазо-двигательной активности. Время программирующей стадии действия пропорционально величине и сложности маршрута дви­жения. При прохождении любого маршрута латентное время дви­жения руки при переходе со стартовой позиции на первую опорную точку маршрута в несколько раз превышает время латентной стадии перехода между любыми другими пунктами данного марш­рута, а разница тем больше, чем сложнее маршрут движения. Общая последовательность включения фаз движения руки и глаз всегда одинакова: после подачи сигнала зарегистрирован латент­ный период движения руки и глаз, сменяющийся периодом глазо­двигательной активности, который тем больше, чем сложнее маршрут движения, затем начинается движение руки.

Наблюдающиеся в исследовании движения глаз были разделе­ны на два функционально-различных класса. К первому классу относятся ориентировочно-исследовательские движения глаз, за­регистрированные только в латентной стадии движения руки. По мере выработки двигательного навыка наблюдается их постепенная редукция. Функция ориентировочно-исследовательских движений глаз состоит в формировании перцептивно-моторного образа про­странства и планировании движения по всему маршруту. Ко вто­рому классу относятся афферентирующие движения глаз, которые разделяются на два типа: прослеживающие движения руки скачки и опережающие движения руки скачки на цель. По мере выработ­ки навыка прослеживающие скачки трансформируются в опережа­ющие скачки. Функция афферентирующих движений состоит в сличении, коррекции и установлении масштабного соответствия заданной программы с реальной задачей.


На начальных этапах обучения у испытуемых, не владеющих навыком управления манипулятором, во время латентной стадии движения руки наблюдается большое число движений глаз, пере­секающих тестовую матрицу. Эти движения относятся по преиму­ществу к поступательно-возвратному типу. На стадии реализации у этих испытуемых наблюдаются афферентные прослеживающие движения глаз, сопровождающие исполнительное действие руки (рис. 15).

По мере выработки навыка постепенно сокращается число поступательно-возвратных движений глаз. Они сохраняются лишь во время латентной стадии первого перехода, т. е. до начала дви­жеения руки. Этому соответствует и сокращение латентных перио­дов движения руки каждого перехода на элемент матрицы; в меньшей степени сокращается первый латентный период. Посту-



пательно-возвратные скачки глаз трансформируются в поступа­тельные, непосредственно предшествующие исполнительному дей­ствию. В свою очередь, при хорошо сформированном навыке афферентные прослеживающие движения глаз трансформируются в опережающие исполнительное действие движения. После опере­жающего скачка глаз фиксирует цель до окончания исполнитель­ного действия руки, т. е. до совмещения управляемого пятна с соответствующим элементом матрицы (рис. 16).

В процессе обучения формируется новый образ пространства и перестраиваются или формируются заново соответствующие экспериментальной ситуации сенсомоторные координации; послетого как построен сенсомоторный образ, начинает активно формиро­ваться программа исследуемого действия. Одним из показателей сформированности образа пространства и пространственного дей­ствия являются типы движений глаз, их количество, скорость движения руки и характер сенсомоторного взаимодействия.

Из изложенного выше следует, что для понимания процесса превращения человеческой руки в «орудие орудий» необходима



правильная теоретико-методологическая ориентация исследований исполнительной деятельности. Движения живого органа должны быть не только поняты, но и раскрыты как своего рода морфоло­гические объекты, функциональные органы. Функциональным орга­ном «является всякое временное сочетание сил, способное осуще­ствить определенное достижение» [58, с. 71]. Аналогия между движениями живого органа и анатомическими органами или тканями убедительно обосновывалась двумя главнейшими его свойствами: «... во-первых, живое движение реагирует, во-вторых, оно закономерно эволюционирует и инволюционирует» [7, с. 178]. Подобная трактовка живого движения, выделение в качестве объекта исследования его «биодинамической ткани» задает новую стратегию его научного изучения и практической организации. В частности, она означает и то, что движение, моторная схема, навык не могут быть усвоены — они должны быть построены субъектом. «Упражнение — это повторение без повторений» [7]. Известно, что по мере овладения человеком определенной сис­темой движений, последняя стереотипизуется. Но далее «... эта система, бывшая раньше чем-то внешним, являвшаяся объектом усвоения, превращается постепенно в своеобразный орган инди­видуальности, в средство выражения и реализации отношения че­ловека к действительности» [28, с. 394]. Современную эргономику все в большей мере интересует строение этого «органа индивиду­альности», понимание и предвидение того, что может быть реали­зовано с его помощью.