Файл: Литература 25 Краткая история развития эргономики 27.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 1025

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Интересный вариант замкнутого контура управления движени­ями при формировании двигательных навыков предложен Дж. Адамсом [63]. При разработке своей теории Адаме широко использовал представления об акцепторе действия П. К. Анохина, о задающем элементе и приборе сличения Н. А. Бернштейна и о нервной модели стимула Е. Н. Соколова.

Теория разработана для объяснения процесса научения про­стым дискретным движениям, выполняемым в умеренном, нена­вязанном темпе, т. е. является теорией формирования двигательного навыка. Она относится в первую очередь к линейным перемещениям руки на заданное расстояние в условиях, когда испытуемый не видит отметку, обозначающую нужное конечное положение руки, а длина пути задается ему или в словесной фор­ме, или он ее усваивает в ходе тренировок, перемещая руку до упора в ограничитель.

Согласно Адамсу, центральное место в замкнутом контуре за­нимают механизмы, с помощью которых информация, получаемая по каналам обратной связи, сравнивается с эталоном для обнару­жения ошибок, т. е. в системе предполагается наличие эталонного механизма, в котором фиксировано заданное действие, каналов обратной связи, а также аппарата сравнения, выделения и исправ­ления ошибок. Для формирования навыков первостепенное значе­ние имеет знание о результатах каждого выполненного движения. Это знание используется человеком для того, чтобы перестроить движение и исключить или уменьшить ошибку в каждой после дующей пробе. Подобные последовательные коррекции в конце концов приводят к выработке правильного движения. Эталонный механизм называется перцептивным следом, который представляет собой хранящуюся в памяти информацию о выполненных ранее движениях.

Понятие перцептивного следа эквивалентно понятию нервной модели стимула [56]. Перцептивный след представляет собой механизм, который детерминирует амплитуду движения, а воз­можно и временную организацию движения. Источниками форми­рования перцептивного следа в общем случае служат все виды обратных связей: зрительная, слуховая, проприоцептивная, а так­же рецепторы прикосновения и давления. Прочность перцептивного следа возрастает с увеличением числа проб. При этом информация о ранних, малоточных попытках забывается и растет удельный вес последних проб, реализованных с большой точностью.

Однако научение движению не сводится к столь простой схеме, по которой достаточно, чтобы был выработан перцептивный след и чтобы стимулы текущей обратной связи оказались соответствую­щими ему. На начальной стадии научения решающее значение имеет осознанное и вербализованное знание результатов. Эта ста­дия названа вербально-двигательной. Она заканчивается тогда, когда в ряде реализаций получен удовлетворительный результат и значения ошибок малы. Перцептивный след, достигший опреде­ленного уровня совершенства, фиксируется. Дальнейшее научение может уже происходить без знания результатов. Их заменяет сравнение информации обратных связей с высокоточным и проч­ным перцептивным следом. Эта завершающая стадия названа двигательной.


Адамс приводит логические доказательства в пользу существо­вания особого механизма, функция которого заключается в ини­циации и выборе движения, называемого следом в памяти. След в памяти действует в разомкнутой системе, управляя программнобез коррекции обратными связями движением на начальном участ­ке. Действие следа в памяти и перцептивного следа не совпадает во времени. Вначале включается в управление след в памяти, а несколько позже, когда начинают поступать сигналы обратных связей, управление передается перцептивному следу. Иначе гово­ря, след в памяти представляет собой двигательную программу, которая лишь актуализирует необходимые для осуществления ре­акции механизмы и запускает их в ход, а не управляет реализа­цией более длинной последовательности, как это обычно предпола­гается в концепции открытого контура. Некоторые движения реализуются на основе только следа в памяти, если двигательная реакция может быть классифицирована как баллистическая. Такая реакция инициируется следом в памяти и завершается до того, как испытуемый окажется в состоянии отрегулировать ее в про­цессе осуществления, сопоставляя получаемую обратную связь с перцептивным следом.

Нужно сказать, что объяснение баллистических движений, осуществляемых за время 100—200 мс, представляет наибольшие трудности для концепции замкнутого контура, так как в этих слу­чаях коррекция должна осуществляться до завершения движения. Для объяснения подобных случаев вводится предположение о том, что двигательный контроль планируется до начала движения. То, что человек может совершать движения, продолжительность кото­рых не превышает 100 мс, использовалось в качестве наиболее сильного (правда, все же косвенного) аргумента в пользу концеп­ции открытого контура. Однако современные исследования в об­ласти физиологии проприоцепции дали многочисленные факты, свидетельствующие о том, что проприоцептивная обратная связь может осуществляться за время, существенно меньшее, чем 100 мс. Корковые потенциалы от нервов, расположенных в языке и конеч­ностях, регистрируются через 3—5 мс. Полный цикл от мышечных рецепторов глаза через мозг и обратно осуществляется за 10 мс. Кортикальный ответ на движение руки регистрируется через 10 мс, а полный интервал от поступления двигательного стимула (через кору) и до ответа ЭМГ составляет всего 30—40 мс. Таким образом, двигательная система обладает необходимыми «нейрон­ными скоростями» для того, чтобы регуляция движений осуществ­лялась по замкнутому контуру и обратная связь использовалась не только на всех стадиях обучения, но и при реализации каждого отдельного двигательного акта [75].



Учитывая эти факты, нельзя оставлять без внимания и то не­маловажное обстоятельство, что «нейронные скорости» и скорости человеческих действий не совпадают друг с другом. Поэтому сами по себе значения скорости проведения нервных импульсов могут рассматриваться как косвенные доказательства потенциальной возможности прохождения информации по каналам обратной связи. Прямые доказательства этого должны быть получены в пси­хологическом, поведенческом эксперименте.

Концепция Дж. Адамса представляет собой заметный вклад в решение проблем построения и управления движениями. В то же время нельзя не отметить, что настойчивое отрицание Адамсом возможностей построения программ и участия их в регуляции движений даже в варианте обобщенных схем представляет собой шаг назад от теории построения движений, предложенной Н. А. Бернштейном.

В последние годы появляется все большее число работ, в ко­торых преодолевается альтернатива между концепциями открыто­го и закрытого контуров и делаются попытки соединить сильные стороны обеих концепций: построение программы и коррекция дви­жений по ходу их реализации с помощью каналов обратной связи. Выше отмечалось, что в теории Н. А. Бернштейна удачно соче­таются концепции открытого и закрытого контуров, т. е. он ввел в свою модель построения движений как программу, так и обрат­ную связь. Аналогичная попытка соединения двух концепций, но с учетом последних достижений в теории и практике изучения движений была выполнена Р. Шмидтом, который, анализируя обе теории, пришел к заключению, что перед ними стоит ряд трудных проблем [75]. Первая проблема связана с хранением и вызовом моторных программ, число которых невозможно себе представить, если принять тезис: «одна моторная программа — одно движение». Теория замкнутого контура также не снимает проблемы хранения; более того, в этом случае должны храниться не только программы, но и эталоны точности, с которыми должно сравниваться каждое движение. Вторая проблема связана с возникновением, или фор­мированием, новых движений. Теоретически проблема формули­руется следующим образом: откуда берутся программы или этало­ны точности, если исполнители могут продуцировать такие движения, которые никогда ранее точно так же не выполнялись. Наконец, третья проблема состоит в том, каким образом индиви­дуум приходит к обнаружению собственных двигательных ошибок и к повышению точности при последующих действиях. При этом остаются неясными механизмы обнаружения двух типов ошибок, имеющих различные источники: «шум» в сенсорной или двигатель­ной системах либо внешнее окружение. Перечисленные трудности и побудили Р. Шмидта предложить компромиссный вариант — теорию схем, которая, по его замыслу, в значительной мере их устраняет. Он исходит из того, что в системе управления движе­ниями широко используются оба механизма регулирования и по­этому не имеет смысла классифицировать системы на только открытые или замкнутые. Однако относительная роль каждого из них существенно различается в зависимости от типа и слож­ности движений, от момента времени выполнения движения и от исследуемого уровня системы. Например, компьютер, с одной сто­роны, можно рассматривать как систему открытого контура, по­скольку он может работать, не принимая во внимание ошибки, которые могут быть в программе, но, с другой стороны, он будет системой замкнутого контура, поскольку программист может обна­ружить ошибку после выполнения программы и внести изменения в последующую серию. Точно так же и система открытого контура может иметь петлю обратной связи, которая предупреждает про­грамму, например, от деления на ноль, а если такая попытка предпринимается, то внутренняя петля обратной связи может обнаружить это и внести изменения в выполнение программы открытого контура.


Анализ многочисленных данных приводит к заключению, что в человеческом поведении нет моторных программ, продуцирующих движение без обратной связи. Моторная программа представляет двигательным системам все детали работы, необходимые для про­хождения конечностью расстояния до определенной цели, а обрат­ная связь необходима для достижения этой цели. Если же появляется необходимость изменить цель движения в связи с про­исшедшим изменением в окружающей среде, то программа про­должает выполняться по-прежнему в течение некоторого времени (около 150 мс), пока движение не перестроится на достижение новой цели. В этом случае механизмы обратной связи активно обеспечивают достаточное достижение в новых условиях «невер­ной» цели. Шмидт определяет моторную программу как набор заранее построенных моторных команд, которые после активации реализуются в движение, ориентированное на достижение задан­ной цели, причем эти движения не затрагиваются периферической обратной связью, сообщающей о необходимости изменения цели. Развивая теорию схем, призванную объединить концепции от­крытого и закрытого контура, Шмидт постулирует существование двух состояний моторной памяти: одно — для вызова, другое — для узнавания. Вызывающая память является структурой, ответст­венной за генерирование импульсов к мышцам, производящим дви­жение (или выполняющим коррекцию), в то время как узнающая память представляет собой структур}, ответственную за оценку продуцируемой движением обратной связи, что позволяет выра­батывать информацию об ошибке движения.

В теории схем принимается также допущение о существовании «обобщенных» двигательных программ, создаваемых внутри цент­ральной нервной системы и содержащих мышечные команды со всеми деталями, необходимыми для выполнения движения. Роль, выполняемая программой, варьирует в зависимости от продолжи­тельности движения.

В случае быстрого движения (т. е. движения, время которого составляет менее 200 мс) двигательный акт выполняется под полным контролем вызывающей памяти, в которой программа заранее определяет все детали движения.

В случае более медленных движений движение производится с использованием сразу и вызывания и узнавания. Роль вызываю­щей памяти здесь заключается в производстве небольших уточ­няющих движений, а основным фактором, определяющим точность выполнения задания, является сравнение ожидаемой и действи­тельной обратной связи. Следовательно, медленные движения находятся в зависимости от узнающей памяти, хотя субъект мо­жет производить корректирующие движения с использованием вызывающей памяти.


Теории открытого и закрытого контура, а также различные варианты их объединения представляют собой существенный вклад в понимание механизмов построения и управления человеческими движениями и действиями. В исследованиях, лежащих в основе указанных теорий, накоплен арсенал функциональных элементов, важных для понимания регуляции движений. На очереди решение более сложной исследовательской задачи — установление различных типов связей между этими элементами. Без решения этой задачи теории открытого и закрытого контура не могут пре­тендовать на то, чтобы составить необходимую научную основу практики рационализации, организации и проектирования новых видов трудовой деятельности. Однако при всей оригинальности и обоснованности ряда важных положений они пока остаются общи­ми конкурирующими теориями построения движений и нуждаются не только в согласовании, но и в развитии, детализации, экспери­ментальной проверке, а возможно и в корректировке отдельных положений. Опыт практической работы в эргономике свидетельст­вует о том, что переход от общей теории, развитой в физиологии, биомеханике или психологии, к решению практических задач опти­мизации или проектирования деятельности и ее средств — дело далеко не простое.

Для эргономики недостаточно утверждения о том, что теоре­тические крайности сходятся и что в реальной деятельности имеет­ся тесное взаимодействие программного и кольцевого управления . движениями и действиями человека. Эргономику интересуют кон­кретные пределы независимости или сходимости, взаимодействия между программным и кольцевым способом управления примени­тельно к различным видам движения и конкретным условиям, в том числе и временным режимам их осуществления.

Живучесть оппозиции между теориями открытого и закрытого контура объясняется следующими обстоятельствами. В качестве предмета исследования брались слишком различные по своему биомеханическому рисунку и по своим задачам движения. Изуча­лись естественные и орудийные, изолированные и цепные (серий­ные) , быстрые и медленные, врожденные и заученные, вызванные (реактивные) движения. Для их исследования использовались методы, имеющие различную разрешающую способность: от про­стого наблюдения до весьма совершенных средств регистрации временного и пространственного рисунка движений. Организация движений исследовалась на различных уровнях, и нередки случаи генерализации результатов, полученных на психофизиологических, нейропсихологических, биомеханических и психологических уров­нях. Наконец, во многих исследованиях движение либо бралось как целое без достаточного расчленения на свои структурные компоненты, либо в качестве предмета исследования выступали отдельные элементы, изолированные от структуры движения в це­лом. Все это вызывало и вызывает большие трудности в сопостав­лении результатов, полученных в различных исследованиях. Поэтому преодоление оппозиции между теориями открытого и закрытого контуров регулирования по-прежнему остается актуаль­ной научной и практической задачей.