Файл: Учебник Трофимова Курс физики.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.07.2020

Просмотров: 34561

Скачиваний: 521

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

Введение

Предмет физики и ее связь с другими науками

Единицы физических величин

1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ

Глава 1 Элементы кинематики

§ 1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения

§ 2. Скорость

§ 3. Ускорение и его составляющие

§ 4. Угловая скорость и угловое ускорение

Глава 2 Динамика материальной точки и поступательного движения твердого тела

§ 5. Первый закон Ньютона. Масса. Сила

§ 6. Второй закон Ньютона

§ 7. Третий закон Ньютона

§ 8. Силы трения

§ 9. Закон сохранения импульса. Центр масс

§ 10. Уравнение движения тела переменной массы

Глава 3 Работа и энергия

§11. Энергия, работа, мощность

§ 12. Кинетическая и потенциальная энергии

§ 13. Закон сохранения энергии

§ 14. Графическом представление энергии

§ 15. Удар абсолютно упругих и неупругих тел

Глава 4 Механика твердого тела

§ 16. Момент инерции

§ 17. Кинетическая энергия вращения

§ 18. Момент силы. Уравнение динамики вращательного движения твердого тела

§ 19. Момент импульса и закон то сохранения

§ 20. Свободные оси. Гироскоп

§ 21. Деформации твердого тела

Глава 5 Тяготение. Элементы теории поля

§ 22. Законы Кеплера. Закон всемирного тяготения

§ 23. Сила тяжести и вес. Невесомость

§ 24. Поле тяготения и то напряженность

§ 25. Работа в поле тяготения. Потенциал поля тяготения

§ 26. Космические скорости

§ 27. Неинерциальные системы отсчета. Силы инерции

Глава 6 Элементы механики жидкостей

§ 28. Давление в жидкости и газе

§ 29. Уравнение неразрывности

§ 30. Уравнение Бернулли и следствия из него

§ 31. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей

§ 32. Методы определения вязкости

§ 33. Движение тел в жидкостях и газах

Глава 7 Элементы специальной (частной) теории относительности

§ 34. Преобразования Галилея. Механический принцип относительности

§ 35. Постулаты специальной (частной) теории относительности

§ 36. Преобразования Лоренца

§ 37. Следствия из преобразований Лоренца

§ 38. Интервал между событиями

§ 39. Основной закон релятивистской динамики материальной точки

§ 40. Закон взаимосвязи массы и энергии

2 ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

Глава 8 Молекулярно-кинетическая теория идеальных газов

§ 41. Статистический и термодинамический методы. Опытные законы идеального газа

§ 42. Уравнение Клапейрона — Менделеева

§ 43. Основное уравнение молекулярно-кинетической теории идеальных газов

§ 44. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения

§ 45. Барометрическая формула. Распределение Больцмана

§ 46. Среднее число столкновений и средняя длина свободного пробега молекул

§ 47. Опытное обоснование молекулярно-кинетической теории

§ 48. Явления переноса в термодинамически неравновесных системах

§ 48. Вакуум и методы его получения. Свойства ультраразреженных газов

Глава 9 Основы термодинамики

§ 50. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул

§ 51. Первое начало термодинамики

§ 52. Работа газа при изменении его объема

§ 53. Теплоемкость

§ 54. Применение первого начала термодинамики к изопроцессам

§ 55. Адиабатический процесс. Политропный процесс

§ 56. Круговой процесс (цикл). Обратимые и необратимые процессы

§ 57. Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

§ 58. Второе начало термодинамики

§ 59. Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа

Задачи

Глава 10 Реальные газы, жидкости и твердые тела

§ 60. Силы и потенциальная энергия межмолекулярного взаимодействия

§ 61. Уравнение Ван-дер-Ваальса

§ 62. Изотермы Ван-дер-Ваальса и их анализ

§ 63. Внутренняя энергия реального газа

§ 64. Эффект Джоуля — Томсона

§ 65. Сжижение газов

§ 66. Свойства жидкостей. Поверхностное натяжение

§ 67. Смачивание

§ 68. Давление под искривленной поверхностью жидкости

§ 69. Капиллярные явления

§ 70. Твердые тела. Моно- и поликристаллы

§ 71. Типы кристаллических твердых тел

§ 72. Дефекты в кристаллах

§ 73. Теплоемкость твердых тел

§ 74. Испарение, сублимация, плавление и кристаллизация. Аморфные тела

§ 75. Фазовые переходы I и П рода

§ 76. Диаграмма состояния. Тройная точка

Задачи

3 ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11 Электростатика

§ 77. Закон сохранения электрического заряда

§ 78. Закон Кулона

§ 79. Электростатическое поле. Напряженность электростатического поля

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

§ 81. Теорема Гаусса для электростатического поля в вакууме

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

§ 83. Циркуляция вектора напряженности электростатического поля

§ 84. Потенциал электростатического поля

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

§ 86. Вычисление разности потенциалов по напряженности поля

§ 87. Типы диэлектриков. Поляризация диэлектриков

§ 88. Поляризованность. Напряженность поля в диэлектрике

§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике

§ 90. Условия на границе раздела двух диэлектрических сред

§ 91. Сегнетоэлектрики

§ 92. Проводники в электростатическом поле

§ 93. Электрическая емкость уединенного проводника

§ 94. Конденсаторы

§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля

Задачи

Глава 12 Постоянный электрический ток

§ 96. Электрический ток, сила и плотность тока

§ 97. Сторонние силы. Электродвижущая сила и напряжение

§ 98. Закон Ома. Сопротивление проводников

§ 99. Работа и мощность тока. Закон Джоуля — Ленца

§ 100. Закон Ома для неоднородного участка цепи

§ 101. Правила Кирхгофа для разветвленных цепей

Задачи

Глава 13 Электрические токи в металлах, вакууме и газах

§ 102. Элементарная классическая теория электропроводности металлов

§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов

§ 104. Работа выхода электронов из металла

§ 105. Эмиссионные явления и их применение

§ 106. Ионизация газов. Несамостоятельный газовый разряд

§ 107. Самостоятельный газовый разряд и его типы

§ 108. Плазма и ее свойства

Задачи

Глава 14 Магнитное поле

§ 109. Магнитное поле и его характеристики

§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля

§ 111. Закон Ампера. Взаимодействие параллельных токов

§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля

§ 113. Магнитное поле движущегося заряда

§ 114. Действие магнитного поля на движущийся заряд

§ 115. Движение заряженных частиц в магнитном поле

§ 116. Ускорители заряженных частиц

§ 117. Эффект Холла

§ 118. Циркуляция вектора В магнитного поля в вакууме

§ 119. Магнитные поля соленоида и тороида

§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля В

§ 121. Работа по перемещению проводника и контура с током в магнитном поле

Задачи

Глава 15 Электромагнитная индукция

§122. Явление электромагнитной индукции (опыты Фарадея)

§ 123. Закон Фарадея и его вывод из закона сохранения энергии

§ 124. Вращение рамки в магнитном поле

§ 125. Вихревые токи (токи Фуко)

§ 126. Индуктивность контура. Самоиндукция

§ 127. Токи при размыкании и замыкании цепи

§ 128. Взаимная индукция

§ 129. Трансформаторы

§ 130. Энергия магнитного поля

Глава 16 Магнитные свойства вещества

§ 131. Магнитные моменты электронов и атомов

§ 132. Диа- и парамагнетизм

§ 133. Намагниченность. Магнитное поле в веществе

§ 134. Условия на границе раздела двух магнетиков

§ 135. Ферромагнетики и их свойства

§ 136. Природа ферромагнетизма

Глава 17 Основы теории Максвелла для электромагнитного поля

§ 137. Вихревое электрическое поле

§ 138. Ток смещения

§ 139. Уравнения Максвелла для электромагнитного поля

4 КОЛЕБАНИЯ И ВОЛНЫ

Глава 18 Механические и электромагнитные колебания

§ 140. Гармонические колебания и их характеристики

§ 141. Механические гармонические колебания

§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники

§ 143. Свободные гармонические колебания в колебательном контуре

§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения

§ 145. Сложение взаимно перпендикулярных колебаний

§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания

§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение

§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс

§ 148. Переменный ток

§ 150. Резонанс напряжений

§ 151. Резонанс токов

§ 152. Мощность, выделяемая в цепи переменного тока

Глава 19 Упругие волны

§ 153. Волновые процессы. Продольные и поперечные волны

§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение

§ 155. Принцип суперпозиции. Групповая скорость

§ 156. Интерференция волн

§ 157. Стоячие волны

§ 158. Звуковые волны

S 159. Эффект Доплере в акустике

§ 160. Ультразвук и его применение

Глава 20 Электромагнитные волны

§ 161. Экспериментальное получение электромагнитных волн

§ 162. Дифференциальное уравнение электромагнитной волны

§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля

§ 164. Излучение диполя. Применение электромагнитных волн

5 ОПТИКА. КВАНТОВАЯ ПРИРОДА ИЗЛУЧЕНИЯ

Глава 21 Элементы геометрической и электронной оптики

§ 165. Основные законы оптики. Полное отражение

§ 166. Тонкие линзы. Изображение предметов с помощью линз

§ 187. Аберрации (погрешности) оптических систем

§ 168. Основные фотометрические величины и их единицы

§ 189. Элементы электронной оптики

Глава 22 Интерференция света

§ 170. Развитие представлений о природе света

§ 171. Когерентность и монохроматичность световых волн

§ 172. Интерференция света

§ 173. Методы наблюдения интерференции света

§ 174. Интерференция света в тонких пленках

§ 175. Применение интерференции света

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

§ 177. Метод зон Френеля. Прямолинейное распространение света

§ 178. Дифракция Френеля на круглом отверстии и диске

§ 178. Дифракция Фраунгофера на одной щели

§ 180. Дифракция Фраунгофера на дифракционной решетке

§ 181. Пространственная решетка. Рассеяние света

§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов

§ 183. Разрешающая способность оптических приборов

§ 184. Понятие о голографии

Глава 24 Взаимодействие электромагнитных волн с веществом

§ 185. Дисперсия света

§ 186. Электронная теория дисперсии светя

§ 187. Поглощение (абсорбция) света

§ 188. Эффект Доплера

§ 189. Излучение Вавилова — Черенкова

Глава 25 Поляризация света

§ 190. Естественный и поляризованный свет

§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков

§ 192. Двойное лучепреломление

§ 193. Поляризационные призмы и поляроиды

§ 194. Анализ поляризованного света

§ 195. Искусственная оптическая анизотропия

§ 196. Вращение плоскости поляризации

Глава 26 Квантовая природа излучения

§ 197. Тепловое излучение и его характеристики

§ 188. Закон Кирхгофа

§ 199. Законы Стефана — Больцмана и смещения Вина

§ 200. Формулы Рэлея — Джинса и Планка

§ 201. Оптическая пирометрия. Тепловые источники света

§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта

§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

§ 204. Применение фотоэффекта

§ 205. Масса и импульс фотона. Давление света

§ 206. Эффект Комптона и его элементарная теория

§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения

6 ЭЛЕМЕНТЫ КВАНТОВОЙ ФИЗИКИ АТОМОВ, МОЛЕКУЛ И ТВЕРДЫХ ТЕЛ

Глава 27 Теория атома водорода по Бору

§ 208. Модели атома Томсона и Резерфорда

§ 209. Линейчатый спектр атома водорода

§ 210. Постулаты Бора

§ 211. Опыты Франка и Герца

§ 212. Спектр атома водорода по Бору

Глава 28 Элементы квантовой механики

§ 213. Корпускулярно-волновой дуализм свойств вещества

§ 214. Некоторые свойства волн да Бройля

§ 215. Соотношение неопределенностей

§ 216. Волновая функция и ее статистический смысл

§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

§ 218. Принцип причинности в квинтовой механике

§ 219. Движение свободной частицы

§ 220. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект

§ 222. Линейный гармонический осциллятор в квантовой механике

Глава 29 Элементы современной физики атомов и молекул

§ 223. Атом водорода в квантовой механике

§ 224. 1s-Состояние электрона в атоме водорода

§ 225. Спин электрона. Спиновое квантовое число

§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны

§ 227. Принцип Паули. Распределение электронов в атоме по состояниям

§ 228. Периодическая система элементов Менделеева

§ 229. Рентгеновские спектры

§ 230. Молекулы: химические связи, понятие об энергетических уровнях

§ 231. Молекулярные спектры. Комбинационное рассеяние света

§ 232. Поглощение. Спонтанное и вынужденное излучения

§ 233. Оптические квантовые генераторы (лазеры)

Глава 30 Элементы квантовой статистики

§ 234. Квантовая статистика. Фазовое пространство. Функция распределения

§ 235. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака

§ 236. Вырожденный электронный газ в металлах

§ 237. Понятие о квантовой теории теплоемкости. Фононы

§ 238. Выводы квантовой теории электропроводности металлов

§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона

Глава 31 Элементы физики твердого тела

§ 240. Понятие о зонной теории твердых тел

§ 241. Металлы, диэлектрики и полупроводники по зонной теории

§ 242. Собственная проводимость полупроводников

§ 243. Примесная проводимость полупроводников

§ 244. Фотопроводимость полупроводников

§ 245. Люминесценция твердых тел

§ 246. Контакт двух металлов по зонной теории

§ 247. Термоэлектрические явления и их применение

§ 248. Выпрямление на контакте металл — полупроводник

§ 249. Контакт электронного и дырочного полупроводников (p-n-переход)

§ 250. Полупроводниковые диоды и триоды (транзисторы)

7 ЭЛЕМЕНТЫ ФИЗИКИ АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32 Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа

§ 252. Дефект массы и энергия связи ядра

§ 253. Спин ядра и его магнитный момент

§ 254. Ядерные силы. Модели ядра

§ 255. Радиоактивное излучение и его виды

§ 256. Закон радиоактивного распада. Правила смещения

§ 257. Закономерности -распада

§ 258. –-Распад. Нейтрино

§ 259. Гамма-излучение и его свойства

§ 260. Резонансное поглощение -излучения (эффект Мёссбауэра*)

§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц

§ 262. Ядерные реакции и их основные типы

§ 263. Позитрон. +-Распад. Электронный захват

§ 264. Открытие нейтрона. Ядерные реакции под действием нейтронов

§ 265. Реакция деления ядра

§ 266. Цепная реакция деления

§ 267. Понятие о ядерной энергетике

§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций

Глава 33 Элементы физики элементарных частиц

§ 269. Космическое излучение

§ 270. Мюоны и их свойства

§ 271. Мезоны и их свойства

§ 272. Типы взаимодействий элементарных частиц

§ 273. Частицы и античастицы

§ 274. Гипероны. Странность и четность элементарных частиц

§ 275. Классификация элементарных частиц. Кварки

ЗАКЛЮЧЕНИЕ

Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ,

где показатель преломления окружающей пленку среды принят равным 1, а член ± 0/2 обусловлен потерей полуволны при отражении света от границы раздела. Если п>n0, то потеря полуволны произойдет в точке О и вышеупомянутый член будет иметь знак минус; если же п<n0, то потеря полуволны произойдет в точке С и 0/2 будет иметь знак плюс. Согласно рис. 249, OC=CB=d/cosr, OA = OB sin i = 2d tg r sin i. Учитывая для данного случая закон преломления sin i = n sin r, получим

С учетом потери полуволны для оптической разности хода получим

(174.1)

Для случая, изображенного на рис. 249 (п>n0),

В точке Р будет интерференционный максимум, если (см. (172.2))

(174.2)

и минимум, если (см. (172.3))

(174.3)

Интерференция, как известно, наблюдается, только если удвоенная толщина пластинки меньше длины когерентности падающей волны.

1. Полосы равного наклона (интерференция от плоскопараллельной пластинки). Из выражений (174.2) и (174.3) следует, что интерференционная картина в плоскопараллельных пластинках (пленках) определяется величинами 0, d, п и i. Для данных 0, d, и n каждому наклону i лучей соответствует своя интерференционная полоса. Ин­терференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.

Лучи 1' и 1", отразившиеся от верхней и нижней граней пластинки (рис. 250), параллельны друг другу, так как пластинка плоскопараллельна. Следовательно, ин­терферирующие лучи 1' и 1" «пересекаются» только в бесконечности, поэтому говорят, что полосы равного наклона локализованы в бесконечности. Для их наблюдения исполь­зуют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы. Параллельные лучи 1' и 1" соберутся в фокусе F линзы (на рис. 250 ее оптическая ось параллельна лучам 1' и 1"), в эту же точку придут и другие лучи (на рис. 250 луч 2), параллельные лучу 1, в результате чего увеличивается общая интенсивность. Лучи 3, наклоненные под другим углом, соберутся в другой точке Р фокальной плоскости линзы. Легко показать, что если оптическая ось линзы перпендикулярна поверхности пластинки, то полосы равного наклона будут иметь вид концентрических колец с цент­ром в фокусе линзы.

2. Полосы равной толщины (интерференция от пластинки переменной толщины). Пусть на клин (угол между боковыми гранями мал) падает плоская волна, направле­ние распространения которой совпадает с параллельными лучами 1 и 2 (рис. 251). Из всех лучей, на которые разделяется падающий луч 1, рассмотрим лучи 1' и 1", отразившиеся от верхней и нижней поверхностей клина. При определенном взаимном положении клина и линзы лучи 1' и 1" пересекутся в некоторой точке А, являющейся изображением точки В. Так как лучи 1' и 1" когерентны, они будут интерферировать. Если источник расположен довольно далеко от поверхности клина и угол ничтожно мал, то оптическая разность хода между интерферирующими лучами 1' и 1" может быть с достаточной степенью точности вычислена по формуле (174.1), где d тол­щина клина в месте падения на него луча. Лучи 2' и 2", образовавшиеся при делении луча 2, падающего в другую точку клина, собираются линзой в точке А'. Оптическая разность хода уже определяется толщиной d'. Таким образом, на экране возникает система интерференционных полос. Каждая из полос возникает при отражении от мест пластинки, имеющих одинаковую толщину (в общем случае толщина пластинки может изменяться произвольно). Интерференционные полосы, возникающие в резуль­тате интерференции от мест одинаковой толщины, называются полосами равной толщины.


Так как верхняя и нижняя грани клина не параллельны между собой, то лучи 1' и 1" (2' и 2") пересекаются вблизи пластинки, в изображенном на рис. 251 случае — над ней (при другой конфигурации клина они могут пересекаться и под пластинкой). Таким образом, полосы равной толщины локализованы вблизи поверхности клина. Если свет падает на пластинку нормально, то полосы равной толщины локализуются на верхней поверхности клина.

3. Кольца Ньютона. Кольца Ньютона, являющиеся классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны (рис. 252). Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падения света имеющие вид концентрических окружностей.

В отраженном свете оптическая разность хода (с учетом потери полуволны при отражении), согласно (174.1), при условии, что показатель преломления воздуха n=1, а i=0,

где dширина зазора. Из рис. 252 следует, что , где Rрадиус кривизны линзы, r радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая, что d мало, получим d=r2/(2R). Следовательно,

(174.4)

Приравняв (174.4) к условиям максимума (172.2) и минимума (172.3), получим выражения для радиусов m-го светлого кольца и m-го темного кольца соответственно

Измеряя радиусы соответствующих колец, можно (зная радиус кривизны линзы R) определить 0 и, наоборот, по известной 0 найти радиус кривизны R линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны 0 (см. (174.2)). Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждения были проведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на 0/2, т.е. максимумам интерфере­нции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

§ 175. Применение интерференции света

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны 0. Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохожде­ние света через каждую преломляющую поверхность линзы, например через границу стекло–воздух, сопровождается отражением 4% падающего потока (при показа­теле преломления стекла 1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и све­тосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.


Для устранения указанных недостатков осуществляют так называемое просветле­ние оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показа­телем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух–пленка и пленка–стекло возникает интерференция когерентных лучей 1' и 2' (рис. 253). Толщину пленки d и показатели преломления стекла nс и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна (см. (172.3)). Расчет показывает, что амплитуды от­раженных лучей равны, если

(175.1)

Так как nс, n и показатель преломления воздуха n0 удовлетворяют условиям nс >n>n0, то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. i=0)

где nd оптическая толщина пленки. Обычно принимают m=0, тогда

Таким образом, если выполняется условие (175.1) и оптическая толщина плевки равна 0/4, то в результате интерференции наблюдается гашение отраженных лучей. Taк как добиться одновременного гашения для всех длин воли невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны 00,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции. В отличие от двухлучевой интерференции, которую мы рас­сматривали до сих пор, многолучевая интерференция возникает при наложении боль­шого числа когерентных световых пучков. Распределение интенсивности в интерферен­ционной картине существенно различается; интерференционные максимумы значитель­но уже и ярче, чем при наложении двух когерентных световых пучков. Так, резуль­тирующая амплитуда световых колебаний одинаковой амплитуды в максимумах ин­тенсивности, где сложение происходит в одинаковой фазе, в N раз больше, а интенсив­ность в N2 раз больше, чем от одного пучка (N число интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться гра­фическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

Многолучевую интерференцию можно осуществить в многослойной системе чере­дующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной 0/4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnS с большим показателем преломления п1 находится пленка криолита с меньшим показателем преломления n2) возникает большое число отраженных интерферирующих лучей, кото­рые при оптической толщине пленок 0/4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной систе­мы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения 96% (при коэффициенте пропускания 3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференцион­ных светофильтров (узкополосных оптических фильтров).


Явление интерференции также применяется в очень точных измерительных прибо­рах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона. Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку P1. Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) в луч 2 (проходит через него). Луч 1 отражается от зеркала M1 и, возвращаясь обратно, вновь проходит через пластинку P1 (луч 1'). Луч 2 идет к зеркалу М2, отражается от него, возвращается обратно и отражается от пластинки Р1 (луч 2'). Так как первый из лучей проходит сквозь пластинку Р1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р2 (точно такая же, как и Р1, только не покрытая слоем серебра).

Лучи 1' и 2' когерентны; следовательно, будет наблюдаться интерференция, резуль­тат которой зависит от оптической разности хода луча 1 от точки О до зеркала М1 и луча 2 от точки О до зеркала M2. При перемещении одного из зеркал на расстояние 0/4 разность хода обоих лучей увеличится на 0/2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению ин­терференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10–7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).

Российский физик В. П. Линник (1889—1984) использовал принцип действия ин­терферометра Майкельсона для создания микроинтерферометра (комбинация интерфе­рометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Интерферометры — очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути ин­терферирующих лучей располагаются две одинаковые кюветы длиной l, одна из которых заполнена, например, газом с известным (n0), а другая — с неизвестным (nx) показателями преломления. Возникшая между интерферирующими лучами дополни­тельная оптическая разность хода =(nxn0)l . Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной

где m0 показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину m0 при известных l, n0 и , можно вычислять nx или изменение nxn0. Например, при смещении интерференционной картины на 1/5 полосы при l=10 см и =0,5 мкм nxn0 = 10–6, т.е. интерференцион­ные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).


Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, об­текающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер­вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

Задачи

22.1. Определить, какую длину пути s1 пройдет фронт волны монохроматического света в ваку­уме за то же время, за которое он проходит путь s2=1,5 мм в стекле с показателем преломления n2=1,5. [2,25 мм]

22.2. В опыте Юнга щели, расположенные на расстоянии 0,3 мм, освещались монохромати­ческим светом с длиной волны 0,6 мкм. Определить расстояние от щелей до экрана, если ширина интерференционных полос равна 1 мм. [0,5 м]

22.3. На стеклянный клин (n=1,5) нормально падает монохроматический свет (=698 нм). Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм. [0,4']

22.4. Установка для наблюдения колец Ньютона освещается монохроматическим светом, пада­ющим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в отраженном свете уменьшились в 1,21 раза. Определить показатель преломления жидкости. [1,46]

22.5. На линзу с показателем преломления 1,55 нормально падает монохроматический свет с длиной волны 0,55 мкм. Для устранения потерь отраженного света на линзу наносится тонкая пленка. Определить: 1) оптимальный показатель преломления пленки; 2) толщину пленки. [1) 1,24; 2) 0,111 мкм]

22.6. В опыте с интерферометром Майкельсона для смещения интерференционной картины на 450 полос зеркало пришлось переместить на расстояние 0,135 мм. Определить длину волны падающего света. [0,6 мкм]

22.7. На пути одного из лучей интерференционного рефрактометра поместили откачанную трубку длиной 10 см. При заполнении трубки хлором интерференционная картина смести­лась на 131 полосу. Определить показатель преломления хлора, если наблюдение произ­водится с монохроматическим светом с длиной волны 0,59 мкм. [1,000773]

Глава 23 Дифракция света

§ 176. Принцип Гюйгенса — Френеля

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятст­вий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.