Файл: Курс лекций по дисциплине Эконометрика.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 374

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
=1 свидетельствует о наличии функциональной связи между переменными Y и X. Если указанные переменные не коррелированны друг с другом, то =0.

Можно показать, что не может быть меньше величины коэффициента корреляции r (формула (2.9)) и в случае линейной связи эти величины совпадают.

Это позволяет использовать величину разности R2 в качестве меры отклонения регрессионной зависимости от линейного вида.
2.5. Оценка статистической значимости регрессии

Перейдем к вопросу о том, как отличить "хорошие" оценки МНК от "плохих". Конечно, предполагается, что существуют критерии качества рассчитанной линии регрессии.

Перечислим способы, которые помогают решить вопрос о достоинствах рассчитанной линии регрессии:

  • построение доверительных интервалов и оценка статистической значимости коэффициентов регрессии по t-критерию Стьюдента;

  • дисперсионный анализ и F – критерий Фишера;

  • проверка существенности выборочного коэффициента корреляции (детерминации).

Перейдем к подробному изложению свойств оценок МНК и способов проверки их значимости.

Несложно показать, что оценки и полученные МНК по (2.8) с учетом ограничений (2.3)-(2.5) являются линейными несмещенными оценками и обладают наименьшими дисперсиями (являются эффективными) в классе линейных оценок (теорема Гаусса-Маркова).

Для вычисления интервальных оценок , предполагаем нормальное распределение случайной величины u. Для получения интервальных оценок , оценим дисперсию случайного члена по отклонениям ei. В качестве оценки дисперсии ошибки возьмем величину:

. (2.12)

Вычислим величину


,

и - стандартную ошибку коэффициента регрессии .

Статистика

,

имеет t-распределение Стьюдента. Так как несмещенная оценка, то для заданного 100(1–)% уровня значимости доверительный интервал для суть:

, (2.13)

где t,n-2 – табличное значение t распределения для (n-2) степеней свободы и уровня значимости .

Вычислим величину

,

и - стандартную ошибку2 коэффициента регрессии .

Статистика

,

имеет t-распределение Стьюдента. Так как несмещенная оценка, то для заданного 100(1–)% уровня значимости доверительный интервал для суть:

, (2.14)

где t,n-2 – табличное значение t распределения для (n-2) степеней свободы и уровня значимости .

Проверим гипотезу о равенстве нулю коэффициента , т.е.

H0: =0.

С учетом статистики для =0, имея в виду формулу для , получим:

. (2.15)

Если вычисленное по (2.15) значение t будет больше t для заданного критического уровня значимости , то гипотеза H0 о равенстве нулю коэффициента отклоняется, если же t<t, то H0 принимается.

Аналогично для проверки гипотезы о равенстве нулю коэффициента , т.е.

H0: =0

рассчитаем статистику:


. (2.16)

Если вычисленное по (2.16) значение t будет больше t для заданного критического уровня значимости , то гипотеза H0 о равенстве нулю коэффициента отклоняется, если же t<t, то H0 принимается.

Заметим, что формула (2.12) может быть упрощена и записана в виде:

. (2.17)

Пример. Приведем расчеты для нашего примера в табл. 2.1. По формуле (2.17) рассчитаем дисперсию ошибки:

=(1282345–(–2,91)3861–0,92761394495)/10=4,6948 или =2,1667.

Найдем доверительный интервал для по первой из формул (2.13):

= .

По таблице t-распределения находим

t0,05;10=2,228 и =-2,912,2282668,219/747,0743.

Откуда =-2,917,798 или -10,74,9.

С вероятностью 0,95 истинные значения  находятся в интервале 10,74,9.

Аналогично найдем доверительный интервал для по первой из формул (2.14): = =0,92760,022 и 0,910,95.

Кроме того по экономическому смыслу переменных примера следует ожидать, что 01. Поскольку доверительный интервал не включает 0 и 1, то результаты регрессии соответствуют гипотезе 01.

Проверим гипотезу о равенстве нулю коэффициента , т.е. H0: =0.

Рассчитаем t-статистику по формуле (2.16):

t=0,9276 /2,1667=92,328.

Табличное значение t0,01;10=3,169, так как t>t0,01;10, то гипотеза о том, что =0 отклоняется. Можно говорить о том, что коэффициент значимо отличен от нуля.

Разложим общую вариацию значений Y около их выборочного среднего на составляющие (см. рис. 2.1):

. (2.18)

Сумма квадратов отклонений от среднего в выборке равна сумме квадратов отклонений значений , полученных по уравнению регрессии, от выборочного среднего
плюс сумма квадратов отклонений Y от линии регрессии .

Первую связывают с линейным воздействием изменений переменной X и называют "объясненной".

Вторая составляющая является остатком и называется "необъясненной" долей вариации переменной Y.

Отметим, что долю дисперсии, объясняемую регрессией, в общей дисперсии результативной переменной Y характеризует коэффициент детерминации, определяемый по формуле (2.10), которая может быть преобразована с учетом (2.18) к виду:

.

Предположим, что мы хотим проверить гипотезу об отсутствии линейной функциональной связи между X и Y, т.е. H0: =0.

Иначе говоря, мы хотим оценить значимость уравнения регрессии (2.6) в целом. Для проверки гипотезы сведем необходимые вычисления в таблицу (табл. 2.3).

Соотношение

(2.19)

удовлетворяет F - распределению Фишера с (1, n-2) степенями свободы. Критические значения этой статистики F для уровня значимости затабулированы.

Если F>F, то гипотеза об отсутствии связи между переменными Y и X отклоняется, в противном случае гипотеза Н0 принимается и уравнение регрессии не значимо.
Таблица 2.3

Таблица дисперсионного анализа





Источник вариации

Сумма квадратов отклонений

Число степеней свободы

Среднее квадратов отклонений

X



1



Остаток



n-2



Общая вариация



n-1

-


Пример.
Для примера табл. 2.1, с учетом предыдущих вычислений, будем иметь таблицу анализа дисперсии - табл. 2.4.

Применяя формулу (2.19), получим . Табличное значение F0,01(1, 10)=10,04, так что имеющиеся данные позволяют отвергнуть гипотезу об отсутствии связи между личными доходами и индивидуальным потреблением. 

Таблица 2.4

Таблица анализа дисперсии (пример в табл. 2.1)

Источник вариации

Сумма квадратов отклонений

Число степеней свободы

Среднее квадратов отклонений

X

0,92762*46510

1

40019,1

Остаток

10*4,6948

10

4,7

Общая вариация

40066,0

11

-


2.6. Интерпретация уравнения регрессии

Проанализируем, какую информацию дает нам оцененное уравнение регрессии (2.6), т.е. поставим вопрос об интерпретации (содержательном объяснении) коэффициентов уравнения.

Во-первых, можно сказать, что увеличение X на одну единицу (в единицах измерения переменной X) приведет к увеличению/уменьшению (в зависимости от знака коэффициента ) значения Y на единиц (в единицах измерения переменной Y).

Во-вторых, необходимо проверить, в каких единицах измерены переменные X и Y и можно ли заменить слово "единица" фактическим количеством (рубли, тонны и т.п.).

В-третьих, константа дает прогнозируемое значение Y, если положить X=0. Это может иметь или не иметь экономического смысла в зависимости от конкретной ситуации.

Часто рассчитывают средний коэффициент эластичности , который показывает, на сколько процентов в среднем по совокупности изменится результат Y от своей средней величины при изменении фактора X на 1% от своего среднего значения.

Пример. Продолжая рассмотрение примера п. 2.1, проинтерпретируем уравнение регрессии между индивидуальным потреблением и личными доходами в США: