Файл: Курс лекций для дистанционного обучения студентов гуманитарных специальностей москва 2012 Авторы составители.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.12.2023

Просмотров: 355

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВОДНАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основной список

Дополнительный список

1. Алгебра высказываний

1.1. Аксиоматический метод и его понятийный аппарат

1.2. Алгебра высказываний. Основные законы математической логики.

1.3. Числа

2. Матрицы. Действия с матрицами

2.1. Вычисление определителей

2.2. Вычисление обратной матрицы

2.3. Решение системы линейных уравнений

3. Комплексные числа

Понятие комплексного числа

Алгебраическая форма комплексного числа.Сложение, вычитание, умножение и деление комплексных чисел

Тригонометрическая и показательная форма комплексного числа

Возведение комплексных чисел в степень

Извлечение корней из комплексных чисел

4. Математические формулы и графики

Для того чтобы успешно решать задачи по высшей математике НЕОБХОДИМО:

Математические формулы и таблицы

Графики и основные свойства элементарных функций

Как правильно построить координатные оси?

Графики и основные свойства элементарных функций

График линейной функции

График квадратичной, кубической функции, график многочлена

Кубическая парабола

График функции 

График гиперболы

График показательной функции

График логарифмической функции

Графики тригонометрических функций

Графики обратных тригонометрических функций



Пример 4

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения. 


Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. Что важно в самом процессе решения? Внимание, и еще раз внимание. Полное решение и ответ в конце урока.

И еще пара примеров для закрепления материала

Пример 5

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения


Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:


 (1) Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.
(2) К третьей строке прибавляем вторую строку, умноженную на –5. К четвертой строке прибавляем вторую строку, умноженную на –7.
(3) Третья и четвертая строки одинаковы, одну из них удаляем.

Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому   – базисные переменные.
Свободная переменная, которой не досталось ступеньки здесь всего одна: 

Обратный ход:
Выразим базисные переменные через свободную переменную:
Из третьего уравнения:


Рассмотрим второе уравнение   и подставим в него найденное выражение  :
Рассмотрим первое уравнение   и подставим в него найденные выражения   и  :

Да, всё-таки удобен калькулятор, который считает обыкновенные дроби.

Таким образом, общее решение:


Еще раз, как оно получилось? Свободная переменная   одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных  ,  ,   тоже заняли свои порядковые места.

Сразу выполним проверку общего решения. Работа для негров, но она у меня уже выполнена, поэтому ловите =)

Подставляем трех богатырей  ,  ,   в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, общее решение найдено верно.

Теперь из найденного общего решения   получим два частных решения. Шеф-поваром здесь выступает единственная свободная переменная  . Ломать голову не нужно.

Пусть  , тогда   – частное решение.
Пусть  , тогда   – еще одно частное решение.

Ответ: Общее решение:  , частные решения:  ,  .


Зря я тут вспомнил про негров, потому-что в голову полезли всякие садистские мотивы, и вспомнилась карикатура, где куклуксклановцы в своих белых балахонах бегут по футбольному полю за чернокожим футболистом. Сижу, тихо улыбаюсь. Знаете, как отвлекает….

Много математики вредно, поэтому похожий заключительный пример для самостоятельного решения.

Пример 6

Найти общее решение системы линейных уравнений. 


Проверка общего решения у меня уже сделана, ответу можно доверять. Ваш ход решения может отличаться от моего хода решения, главное, чтобы совпали общие решения.

Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановлюсь на некоторых особенностях решения, которые не встретились в прорешанных примерах.

В общее решение системы иногда может входить константа (или константы), например:  . Здесь одна из базисных переменных равна постоянному числу:  . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных. Метод Гаусса работает в самых суровых условиях, следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

И, конечно, повторюсь в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Желаю успехов!

Решения и ответы:

Пример 2:Решение:Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду. 

Выполненные элементарные преобразования:
(1) Первую и третью строки поменяли местами.
(2) Ко второй строке прибавили первую строку, умноженную на –6.  К третьей строке прибавили первую строку, умноженную на –7.
(3) К третьей строке прибавили вторую строку, умноженную на –1.
В результате элементарных преобразований получена строка вида

, где, значит, система несовместна.
Ответ:решений нет.

Пример 4:Решение:Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на 2.  К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньке нет единицы, и преобразование (2) направлено на её получение.

(2) К третьей строке прибавили вторую строку, умноженную на –3.
(3) Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)
(4) К третьей строке прибавили вторую строку, умноженную на 3.
(5)У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход.
 – базисные переменные (те, которые на ступеньках), – свободные переменные (те, кому не досталось ступеньки).

Выразим базисные переменные через свободные переменные:
Из третьего уравнения:

Рассмотрим второе уравнение:
Подставим в него найденное выражение:


Рассмотрим первое уравнение:
Подставим в него найденные выражения:  , :


Общее решение:

Найдем два частных решения
Если, то
Если, то

Ответ:Общее решение:, частные решения:,.

Проверка: подставим найденное решение (выражения базисных переменных, и) в левую часть каждого уравнения системы:

Получены соответствующие правые части, таким образом, общее решение найдено верно.

Пример 6:Решение:Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:


(1) Ко второй строке прибавляем первую строку, умноженную на 2. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –3.
(2) К третьей строке прибавляем вторую строку. К четвертой строке прибавляем вторую строку.
(3) Третья и четвертая строки пропорциональны, одну из них удаляем.

 базисные переменные, – свободная переменная. Выразим базисные переменные через свободную переменную:










Ответ:Общее решение:


3. Комплексные числа


Не занимайтесь комплексными числами после комплексного обеда


На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня. Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числа, и немного рубить в тригонометрии, впрочем, если что забылось, я напомню.

Урок состоит из следующих параграфов:
1) Понятие комплексного числа.
2) Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел.
3) Тригонометрическая и показательная форма комплексного числа.
4) Возведение комплексных чисел в степень.
5) Извлечение корней из комплексных чисел.

На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся наиболее интересной темой, после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».

Сначала вспомним «обычные» школьные числа. В математике они называются множеством действительных чисел и обозначаются буквой   (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой обязательно соответствует некоторое действительное число.

Понятие комплексного числа


Прежде чем, мы перейдем к рассмотрению комплексных чисел, дам важный совет: не пытайтесь представить комплексное число «в жизни» – это всё равно, что пытаться представить четвертое измерение в нашем трехмерном пространстве. Если хотите, комплексное число – это двумерное число. И курить бессмысленно. … Так, кто тут улыбается? Видимо, действительно не помогло.

Комплексным числом   называется число вида  , где   и   – действительные числа,   – так называемая мнимая единица. Число   называется действительной частью ()комплексного числа  , число   называется мнимой частью () комплексного числа  .

 – это ЕДИНОЕ  ЧИСЛО, а не сложение. Действительную и мнимую части комплексного числа, в принципе, можно переставить местами:   или переставить мнимую единицу:   – от этого комплексное число не изменится. Но стандартно комплексное число принято записывать именно в таком порядке:  

Чтобы всё было понятнее, сразу приведу геометрическую интерпретацию. Комплексные числа изображаются на комплексной плоскости:

Как упоминалось выше, буквой   принято обозначать множество действительных чисел.Множествожекомплексных чиселпринято обозначать «жирной» или утолщенной буквой  . Поэтому на чертеже следует поставить букву  , обозначая тот факт, что у нас комплексная плоскость.

Комплексная плоскость состоит из двух осей:
 – действительная ось
 – мнимая ось

Правила оформления чертежа практически такие же, как и для чертежа в декартовой системе координат (см. Графики и свойства элементарных функций). По осям нужно задать размерность, отмечаем:

ноль;

единицу по действительной оси;

мнимую единицу   по мнимой оси.

Не нужно проставлять все значения: …–3, –2, –1, 0, 1, 2, 3,… и  .

Да чего тут мелочиться, рассмотрим чисел десять.

Построим на комплексной плоскости следующие комплексные числа:
,  , 
,  , 
,  ,  , 


По какому принципу отмечены числа на комплексной плоскости, думаю, очевидно – комплексные числа отмечают точно так же, как мы отмечали точки еще в 5-6 классе на уроках геометрии.