Файл: Курс лекций для дистанционного обучения студентов гуманитарных специальностей москва 2012 Авторы составители.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.12.2023

Просмотров: 352

Скачиваний: 5

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ВВОДНАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основной список

Дополнительный список

1. Алгебра высказываний

1.1. Аксиоматический метод и его понятийный аппарат

1.2. Алгебра высказываний. Основные законы математической логики.

1.3. Числа

2. Матрицы. Действия с матрицами

2.1. Вычисление определителей

2.2. Вычисление обратной матрицы

2.3. Решение системы линейных уравнений

3. Комплексные числа

Понятие комплексного числа

Алгебраическая форма комплексного числа.Сложение, вычитание, умножение и деление комплексных чисел

Тригонометрическая и показательная форма комплексного числа

Возведение комплексных чисел в степень

Извлечение корней из комплексных чисел

4. Математические формулы и графики

Для того чтобы успешно решать задачи по высшей математике НЕОБХОДИМО:

Математические формулы и таблицы

Графики и основные свойства элементарных функций

Как правильно построить координатные оси?

Графики и основные свойства элементарных функций

График линейной функции

График квадратичной, кубической функции, график многочлена

Кубическая парабола

График функции 

График гиперболы

График показательной функции

График логарифмической функции

Графики тригонометрических функций

Графики обратных тригонометрических функций



Рассмотрим следующие комплексные числа:  ,  ,  . Вы скажете, да это же обыкновенные действительные числа! И будете почти правы. Действительные числа – это частный случай комплексных чисел. Действительная ось   обозначает в точности множество действительных чисел  , то есть на оси  сидят все наши «обычные» числа. Более строго утверждение можно сформулировать так: Множество действительных чисел   является подмножеством множества комплексных чисел  .

Числа  ,  ,   – это комплексные числа с нулевой мнимой частью.

Числа  ,  ,   – это, наоборот, чисто мнимые числа, т.е. числа с нулевой действительной частью. Они располагаются строго на мнимой оси  .

В числах  ,  ,  ,   и действительная и мнимая части не равны нулю. Такие числа тоже обозначаются точками на комплексной плоскости, при этом, к ним принято проводить радиус-векторы из начала координат (обозначены красным цветом на чертеже). Радиус-векторы к числам, которые располагаются на осях, обычно не  чертят, потому-что они сливаются с осями.

Алгебраическая форма комплексного числа.
Сложение, вычитание, умножение и деление комплексных чисел


С алгебраической формой комплексного числа мы уже познакомились,   – это и есть алгебраическая форма комплексного числа. Почему речь зашла о форме? Дело в том, что существуют еще тригонометрическая и показательная форма комплексных чисел, о которых пойдет речь в следующем параграфе.

Действия с комплексными числами не представляют особых сложностей и мало чем отличаются от обычной алгебры.
Сложение комплексных чисел

Пример 1

Сложить два комплексных числа  , 

Для того чтобы сложить два комплексных числа нужно сложить их действительные и мнимые части:


Просто, не правда ли? Действие настолько очевидно, что не нуждается в дополнительных комментариях.

Таким нехитрым способом можно найти сумму любого количества слагаемых: просуммировать действительные части и просуммировать мнимые части.

Для комплексных чисел справедливо правило первого класса:   – от перестановки слагаемых сумма не меняется.

Вычитание комплексных чисел

Пример 2

Найти разности комплексных чисел   и  , если  , 

Действие аналогично сложению, единственная особенность состоит в том, что вычитаемое нужно взять в скобки, а затем – стандартно раскрыть эти скобки со сменой знака:

Результат не должен смущать, у полученного числа две, а не три части. Просто действительная часть – составная:  . Для наглядности ответ можно переписать так:  .

Рассчитаем вторую разность:

Здесь действительная часть тоже составная: 

Чтобы не было какой-то недосказанности, приведу короткий пример с «нехорошей» мнимой частью:  . Вот здесь без скобок уже не обойтись.

Умножение комплексных чисел

Настал момент познакомить вас со знаменитым равенством:

Пример 3

Найти произведение комплексных чисел   , 

Очевидно, что произведение следует записать так:


Что напрашивается? Напрашивается раскрыть скобки по правилу умножения многочленов. Так и нужно сделать! Все

алгебраические действия вам знакомы, главное, помнить, что   и быть внимательным.

Повторим, omg, школьное правило умножения многочленов: Чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена.

Я распишу подробно:


Надеюсь, всем было понятно, что 

Внимание, и еще раз внимание, чаще всего ошибку допускают в знаках.

Как и сумма, произведение комплексных чисел перестановочно, то есть справедливо равенство:  .

В учебной литературе и на просторах Сети легко найти специальную формулу для вычисления произведения комплексных чисел. Если хотите, пользуйтесь, но мне кажется, что подход с умножением многочленов универсальнее и понятнее. Формулу приводить не буду, считаю, что в данном случае – это забивание головы опилками.

Деление комплексных чисел

Пример 4

Даны комплексные числа  ,  . Найти частное  .

Составим частное:


Деление чисел осуществляется методом умножения знаменателя и числителя на сопряженное знаменателю выражение.

Вспоминаем бородатую формулу   и смотрим на наш знаменатель:  . В знаменателе уже есть  , поэтому сопряженным выражением в данном случае является  , то есть 

Согласно правилу, знаменатель нужно умножить на  , и, чтобы ничего не изменилось, домножить числитель на то же самое число  :


Далее в числителе нужно раскрыть скобки (перемножить два числа по правилу, рассмотренному в предыдущем пункте). А в знаменателе воспользоваться формулой   (помним, что  и не путаемся в знаках!!!).

Распишу подробно:


Пример я подобрал «хороший», если взять два числа «от балды», то в результате деления почти всегда получатся дроби, что-нибудь вроде  .

В ряде случаев перед делением дробь целесообразно упростить, например, рассмотрим частное чисел:  . Перед делением избавляемся от лишних минусов: в числителе и в знаменателе выносим минусы за скобки и сокращаем эти минусы:  . Для любителей порешать приведу правильный ответ: 

Редко, но встречается такое задание:


Пример 5

Дано комплексное число  . Записать данное число в алгебраической форме (т.е. в форме  ).

Приём тот же самый – умножаем знаменатель и числитель на сопряженное знаменателю выражение. Снова смотрим на формулу  . В знаменателе уже есть  , поэтому знаменатель и числитель нужно домножить на сопряженное выражение  , то есть на  :


Пример 6

Даны два комплексных числа  ,  . Найти их сумму, разность, произведение и частное.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Иногда для решения предлагается навороченный пример, где нужно выполнить много действий с комплексными числами. Никакой паники: будьте внимательны, соблюдайте правила алгебры, обычный алгебраический порядок действий, и помните, что 

Тригонометрическая и показательная форма комплексного числа


В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже. Рекомендую закачать и по возможности распечатать тригонометрические таблицы, методический материал можно найти на странице Математические формулы и таблицы. Без таблиц далеко не уехать.

Любое комплексное число (кроме нуля)   можно записать в тригонометрической форме:
, где   – это модуль комплексного числа, а   – аргумент комплексного числа. Не разбегаемся, всё проще, чем кажется.

Изобразим на комплексной плоскости число  . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что  : 


Модулем комплексного числа   называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длинарадиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа   стандартно обозначают:   или 

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа:  . Данная формула справедлива для любых значений «а» и «бэ».

Аргументом комплексного числа   называется угол  между положительной полуосьюдействительной оси   и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа:  .

Аргумент комплексного числа   стандартно обозначают:   или 

Из геометрических соображений получается следующая формула для нахождения аргумента:
Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7

Представить в тригонометрической форме комплексные числа:  ,  ,  ,  .
Выполним чертёж:


На самом деле задание устное. Для наглядности перепишу тригонометрическую форму комплексного числа: