Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 603

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1. Описание комплекта типового лабораторного оборудования «Теоретические основы электротехники» 1.1. Общие сведения 1.1.1. Компоновка оборудования Общая компоновка типового комплекта оборудования в стендовом исполнении показано на рис. 1.1. На лабораторном столе закреплена рама, в которой устанавливаются отдельные блоки. Расположение блоков жёстко не фиксировано. Оно может изменяться для удобства проведения того или иного конкретного эксперимента. Наборная панель, на которой собирается электрическая цепь из миниблоков может устанавливаться и непосредственно на столе. Рис.1.1В выдвижных ящиках хранятся наборы миниблоков и устройств, соединительные провода, перемычки и кабели, методические материалы. Один из наборов миниблоков показан на рис. 1.1 на столе. Ящики имеют встроенные замки. 1.1.2. Блок генераторов напряжений Лицевая панель блока генераторов напряжений показана на рис. 1.2. Блок состоит из генератора синусоидальных напряжений, генератора напряжений специальной формы и генератора постоянных напряжений.Все генераторы включаются и выключаются общим выключателем «СЕТЬ» и защищены от внутренних коротких замыканий плавким предохранителем с номинальным током 2 А. Рис.1.2На лицевой панели блока указаны номинальные напряжение и ток каждого источника напряжения, а также диапазоны изменения регулируемых выходных величин. Все источники напряжений гальванически изолированы друг от друга и от корпуса блока и защищены от перегрузок и внешних коротких замыканий самовосстанавливающимися предохранителями с номинальным током 0,2 А. О срабатывании предохранителя свидетельствует индикатор «I >».Генератор синусоидальных напряжений содержит однофазный источник напряжения 24 В (вторичная обмотка питающего трансформатора 220/24 В) и трёхфазный стабилизированный по амплитуде выходного напряжения преобразователь однофазного напряжения в трёхфазное. Выходное сопротивление трёхфазного источника в рабочем диапазоне токов близко к нулю.Генератор напряжений специальной формы вырабатывает на выходе синусоидальный, прямоугольный двухполярный или прямоугольный однополярный сигнал в зависимости от положения переключателя «ФОРМА».Регулировка выходной частоты генератора напряжений специальной формы производится энкодером-потенциометром. Регулировка выходной частоты возможна в двух режимах:- Режим точной настройки частоты с малым шагом (величина шага зависит от величины частоты). При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора мигает.- Режим подекадного переключения выходной частоты. При повороте энкодера-потенциометра на один шаг выходная частота меняется в 10 раз. При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора постоянно горит.Переключение между режимами производится путем нажатия ручки энкодера-потенциометра.При повороте ручки энкодера меняется выходная частота и ее величина отображается на индикаторе с размерностью, показываемой светодиодами.Переключение формы выходного напряжения производится путем нажатия на кнопку ФОРМА. При этом соответствующий светодиод показывает форму выходного напряжения.Амплитуда сигнала регулируется потенциометром «АМПЛИТУДА».Генератор постоянных напряжений содержит три источника стабилизированного напряжения 15 В, гальванически изолированных друг от друга. Выходное напряжение одного из этих источников регулируется от 0 до 15 В десятиоборотным потенциометром. Выходные сопротивления этих источников также близки к нулю и все они допускают режим работы с обратным током (режим потребления энергии). Для получения постоянных напряжений больше 15 В они могут соединяться последовательно. Для исключения источников из собранной схемы цепи используются переключатели (тумблеры). Наборная панель Наборная панель служит для расположения на ней миниблоков в соответствии со схемой данного опыта. На рис. 1.3 показан фрагмент наборной панели с собранной схемой. Рис.1.3Гнёзда на этой панели соединены в узлы, как показано на ней линями. Поэтому часть соединений выполняется автоматически при установке миниблоков в гнёзда панели. Остальные соединения выполняются соединительными проводами и перемычками. Так на фрагменте цепи, показанной на рис.1.3, напряжение подаётся проводами через выключатель к одной из обмоток трансформатора. К другой обмотке подключены резистор и конденсатор, соединённые последовательно.Для измерения токов в ветвях цепи удаляется одна из перемычек и вместо неё в образовавшийся разрыв включается амперметр. Для измерения напряжений на элементах цепи параллельно рассматриваемому элементу включается вольтметр. Набор миниблоков по теории электрических цепей и основам электроники Миниблоки из представляют собой отдельные элементы электрических цепей (резисторы, конденсаторы, индуктивности диоды, транзисторы и т.п.), помещённые в прозрачные корпуса, имеющие штыри для соединения с гнёздами наборной панели. Некоторые миниблоки содержат несколько элементов, соединённых между собой или более сложные функциональные блоки. На этикетках миниблоков изображены условные обозначения элементов или упрощённые электрические схемы их соединения, показано расположение выводов и приведены основные технические характеристики. Миниблоки хранятся в специальном контейнере.Большинство миниблоков комплекта «Теория электрических цепей и основы электроники» содержат по одному элементу электрических цепей. Состав этого набора приведён в табл. 1.1.Таблица 1.1

1.2. Экспериментальная часть

2. Параметры синусоидального напряжения (тока)

2.1. Общие сведения

2.2. Экспериментальная часть

3. Активная мощность цепи синусоидального тока

3.1. Общие сведения

3.2. Экспериментальная часть

4. Цепи синусоидального тока с конденсаторами

4.1. Напряжение и ток конденсатора

4.2. Реактивное сопротивление конденсатора

4.3. Последовательное соединение конденсаторов

4.4. Параллельное соединение конденсаторов

4.5. Реактивная мощность конденсатора

5. Цепи синусоидального с катушками индуктивности

5.1. Напряжение и ток катушки индуктивности

5.2. Реактивное сопротивление катушки индуктивности

5.3. Последовательное соединение катушек индуктивности

5.4. Параллельное соединение катушек индуктивности

5.5. Реактивная мощность катушки индуктивности

6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности

6.2. Параллельное соединение резистора и конденсатора

6.3. Последовательное соединение резистора и катушки индуктивности

6.4. Параллельное соединение резистора и катушки индуктивности

6.5. Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов

6.7. Частотные характеристикипоследовательного резонансного контура

6.8. Частотные характеристики параллельного резонансного контура

6.9. Мощности в цепи синусоидального тока

7. Трансформаторы

7.2. Коэффициент трансформации

7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора

7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора

8. Трехфазные цепи синусоидального тока

8.1. Напряжения в трехфазной цепи

8.2. Трехфазная нагрузка, соединенная по схеме «звезда»

8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»

8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник

9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении

9.1. Общие сведения

9.2. Экспериментальная часть

9.3. Приложение

10. Переходные процессы в линейных электрических цепях

10.1. Переходный процесс в цепи с конденсатором и резисторами

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.3. Затухающие синусоидальные колебания в R-L-C контуре

Литература

непосредственно перед коммутацией, т. е. скачком не меняется.

В данной работе коммутация (включение и выключение) осуществляется транзистором, на базу которого подаются отпирающие импульсы тока от источника синусоидального напряжения с частотой 50 Гц. В результате оба переходных процесса периодически повторяются и их можно наблюдать на осциллографе.

10.1.2. Экспериментальная часть



Задание
Рассчитать докоммутационные (t = - 0), начальные (t = + 0) и установившиеся (t ) значения токов и напряжения на конденсаторе в цепи (рис. 10.1.1) в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается.


Рис. 10.1.1
В каждом из этих случаев определить постоянную времени цепи, снять осциллограммы рассчитанных величин и убедиться, что все токи и напряжение на конденсаторе изменяются с одной постоянной времени, а напряжение на конденсаторе не имеет скачков.
Порядок выполнения работы


  • При включении ключа в цепи (рис. 10.1.1) рассчитайте токи и напряжение на конденсаторе до коммутации (t = - 0, ключ разомкнут), в первый момент после коммутации (t = + 0, ключ замкнут) и в новом установившемся режиме (t ). Результаты расчёта занесите в табл. 10.1.1.

  • Повторите расчёт при размыкании ключа. Результаты занесите также в табл. 10.1.2.

  • Составьте характеристическое уравнение, определите корень р и постоянную времени для первого и для второго случаев, занесите результаты в табл. 10.1.1 и 10.1.2.

  • Соберите цепь согласно схеме (рис.10.1.2), включив в неё вместо изображенных измерительных приборов соответствующие гнёзда коннектора. Обратите внимание на полярность электролитического конденсатора.

  • Включите осциллограф, установите развёртку 2 мС/дел и перерисуйте изображение четырёх измеряемых величин на график (рис.10.1.3). Не забудьте указать масштаб для каждой кривой.

  • Определите по графику или непосредственно по осциллографу докоммутационные (t = - 0) начальные (t = + 0) и установившиеся (t ) значения токов и напряжения на конденсаторе в цепи в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается. Занесите их также в табл. 10.1.1 и10.1.2 и сравните с расчётными.




Рис. 10.1.2


  • Определите по графикам постоянные времени при замыкании и размыкании ключа. Сравните их с расчётными значениями и занесите в табл. 10.1.1 и 10.1.2.

  • Проанализируйте результаты и сделайте выводы.




  1. - ключ замыкается

Таблица 10.1.1

t

uC, В

i1, ьА

i2, мА

i3, мА

, мС

- 0, расчёт

- 0, эксперимент














Расчёт:

 = мС

Эксперимент:

 = мС


+ 0, расчёт

+ 0, эксперимент













, расчёт

, эксперимент
















  1. - ключ размыкается

Таблица 10.1.1

t

uC, В

i1, ьА

i2, мА

i3, мА

, мС

- 0, расчёт

- 0, эксперимент














Расчёт:

 = мС

Эксперимент:

 = мС


+ 0, расчёт

+ 0, эксперимент













, расчёт

, эксперимент















Рис.10.1.2

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.2.1 Общие сведения



Цепь с одной катушкой индуктивности, так же как и цепь с одним конденсатором описывается дифференциальным уравнением первого порядка. Поэтому все токи и напряжения в переходном режиме изменяются по экспоненциальному закону с одной и той же постоянной времени ( ) от начального значения до установившегося. Причём, начальное значение тока в индуктивности равно току в ней непосредственно перед коммутацией, так как ток в катушке не может изменяться скачком по закону коммутации. Напряжение на катушке может изменяться скачком и при отключении может достигать весьма больших значений.

В данной работе коммутация (включение и выключение цепи) осуществляется транзистором, на базу которого подаются однополярные прямоугольные отпирающие импульсы тока от генератора напряжений специальной формы с частотой 200 Гц. Поэтому

оба переходных процесса периодически повторяются и их можно наблюдать на обычном или виртуальном осциллографе.

10.2.2. Экспериментальная часть



Задание
Вывести на дисплей виртуального осциллографа кривые тока и напряжения на катушке индуктивности при подключении и отключении источника постоянного напряжения. В каждом из этих случаев определить экспериментально и рассчитать докоммутационные (t = - 0), начальные (t = + 0) и установившиеся (t ) значения тока и напряжения на катушке, определить по осциллограмме постоянную времени цепи

.

Экспериментальная часть


  • Соберите цепь согласно схеме (рис.10.2.2), включив в неё вместо изображенных измерительных приборов соответствующие гнёзда коннектора.




Рис. 10.2.1


  • Включите осциллограф, установите развёртку 0,5 мС/дел и перерисуйте изображение тока и напряжения на катушке на график (рис.10.2.2). Не забудьте указать масштаб для каждой кривой.

  • Определите по графику или непосредственно по осциллографу докоммутационные (t = - 0) начальные (t = + 0) и установившиеся (t ) значения токов и напряжений на катушке в двух случаях: 1. - ключ замыкается; 2. - ключ размыкается. Занесите их в табл. 10.2.1.

  • Рассчитайте токи и напряжения на катушке для этих же моментов времени, занесите результаты также в табл. 10.2.1. Сравните результаты расчёта и эксперимента.

  • Определите по осциллограммам постоянные времени при включенном и при отключенном источнике питания.



Таблица 10.1.1

t

Включение,  = мС

Выключение,  = мС

uL, В

iL, мА

uL, В

iL, мА

- 0, расчёт

- 0, эксперимент













+ 0, расчёт

+ 0, эксперимент













, расчёт

, эксперимент















Рис.10.2.2

10.3. Затухающие синусоидальные колебания в R-L-C контуре

10.3.1. Общие сведения



В замкнутом контуре (рис. 10.3.1) после отключении его от источника постоянного или переменного напряжения могут возникнуть затухающие синусоидальные колебания, обусловленные начальным запасом энергии в электрическом поле конденсатора и в магнитном поле катушки индуктивности.

В общем случае состояние цепи определяется из дифференциального уравнения, составленного по второму закону Кирхгофа:

Поскольку то



или



Рис. 10.3.1.
Вид решения этого дифференциального уравнения зависит от характера корней характеристического уравнения:



Корни этого уравнения:




Когда , корни вещественные отрицательные и процесс изменения тока и напряжений имеет апериодический затухающий характер (рис.10.3.2а). Если же R<Rкр, то возникает колебательный процесс (рис. 10.3.2б). Тогда решение дифференциального уравнения имеет вид:
sint,

где , .


Рис. 10.3.2.
При уменьшении сопротивления от некоторого значения большего, чем Rкр сначала увеличивается скорость затухающего апериодического процесса, затем, при R=Rкр качественно изменяется характер процесса – он становится колебательным - и при дальнейшем уменьшении сопротивления увеличивается частота колебаний и уменьшается затухание. При R, стремящемся к нулю, частота стремится к резонансной частоте , а затухание – к нулю.

В данной работе заряд конденсатора до напряжения u0 осуществляется однополярными прямоугольными импульсами напряжения и исследуется процесс его разряда на сопротивление и индуктивность во время пауз между импульсами. Повторяющийся процесс заряда и разряда конденсатора можно наблюдать на электронном или виртуальном осциллографе.

10.3.2. Экспериментальная часть




Задание


Исследовать влияние активного сопротивления на характер процесса разряда конденсатора на сопротивление и индуктивность. Сравнить экспериментальные частоту и затухание колебаний с расчётными значениями.

Порядок выполнения работы




  • Измерьте омметром и запишите активное сопротивление катушки индуктивности, указанной на схеме (рис.10.3.3):

.

Rк= Ом.


  • Вычислите резонансную частоту и критическое сопротивление колебательного контура: