Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 568

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1. Описание комплекта типового лабораторного оборудования «Теоретические основы электротехники» 1.1. Общие сведения 1.1.1. Компоновка оборудования Общая компоновка типового комплекта оборудования в стендовом исполнении показано на рис. 1.1. На лабораторном столе закреплена рама, в которой устанавливаются отдельные блоки. Расположение блоков жёстко не фиксировано. Оно может изменяться для удобства проведения того или иного конкретного эксперимента. Наборная панель, на которой собирается электрическая цепь из миниблоков может устанавливаться и непосредственно на столе. Рис.1.1В выдвижных ящиках хранятся наборы миниблоков и устройств, соединительные провода, перемычки и кабели, методические материалы. Один из наборов миниблоков показан на рис. 1.1 на столе. Ящики имеют встроенные замки. 1.1.2. Блок генераторов напряжений Лицевая панель блока генераторов напряжений показана на рис. 1.2. Блок состоит из генератора синусоидальных напряжений, генератора напряжений специальной формы и генератора постоянных напряжений.Все генераторы включаются и выключаются общим выключателем «СЕТЬ» и защищены от внутренних коротких замыканий плавким предохранителем с номинальным током 2 А. Рис.1.2На лицевой панели блока указаны номинальные напряжение и ток каждого источника напряжения, а также диапазоны изменения регулируемых выходных величин. Все источники напряжений гальванически изолированы друг от друга и от корпуса блока и защищены от перегрузок и внешних коротких замыканий самовосстанавливающимися предохранителями с номинальным током 0,2 А. О срабатывании предохранителя свидетельствует индикатор «I >».Генератор синусоидальных напряжений содержит однофазный источник напряжения 24 В (вторичная обмотка питающего трансформатора 220/24 В) и трёхфазный стабилизированный по амплитуде выходного напряжения преобразователь однофазного напряжения в трёхфазное. Выходное сопротивление трёхфазного источника в рабочем диапазоне токов близко к нулю.Генератор напряжений специальной формы вырабатывает на выходе синусоидальный, прямоугольный двухполярный или прямоугольный однополярный сигнал в зависимости от положения переключателя «ФОРМА».Регулировка выходной частоты генератора напряжений специальной формы производится энкодером-потенциометром. Регулировка выходной частоты возможна в двух режимах:- Режим точной настройки частоты с малым шагом (величина шага зависит от величины частоты). При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора мигает.- Режим подекадного переключения выходной частоты. При повороте энкодера-потенциометра на один шаг выходная частота меняется в 10 раз. При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора постоянно горит.Переключение между режимами производится путем нажатия ручки энкодера-потенциометра.При повороте ручки энкодера меняется выходная частота и ее величина отображается на индикаторе с размерностью, показываемой светодиодами.Переключение формы выходного напряжения производится путем нажатия на кнопку ФОРМА. При этом соответствующий светодиод показывает форму выходного напряжения.Амплитуда сигнала регулируется потенциометром «АМПЛИТУДА».Генератор постоянных напряжений содержит три источника стабилизированного напряжения 15 В, гальванически изолированных друг от друга. Выходное напряжение одного из этих источников регулируется от 0 до 15 В десятиоборотным потенциометром. Выходные сопротивления этих источников также близки к нулю и все они допускают режим работы с обратным током (режим потребления энергии). Для получения постоянных напряжений больше 15 В они могут соединяться последовательно. Для исключения источников из собранной схемы цепи используются переключатели (тумблеры). Наборная панель Наборная панель служит для расположения на ней миниблоков в соответствии со схемой данного опыта. На рис. 1.3 показан фрагмент наборной панели с собранной схемой. Рис.1.3Гнёзда на этой панели соединены в узлы, как показано на ней линями. Поэтому часть соединений выполняется автоматически при установке миниблоков в гнёзда панели. Остальные соединения выполняются соединительными проводами и перемычками. Так на фрагменте цепи, показанной на рис.1.3, напряжение подаётся проводами через выключатель к одной из обмоток трансформатора. К другой обмотке подключены резистор и конденсатор, соединённые последовательно.Для измерения токов в ветвях цепи удаляется одна из перемычек и вместо неё в образовавшийся разрыв включается амперметр. Для измерения напряжений на элементах цепи параллельно рассматриваемому элементу включается вольтметр. Набор миниблоков по теории электрических цепей и основам электроники Миниблоки из представляют собой отдельные элементы электрических цепей (резисторы, конденсаторы, индуктивности диоды, транзисторы и т.п.), помещённые в прозрачные корпуса, имеющие штыри для соединения с гнёздами наборной панели. Некоторые миниблоки содержат несколько элементов, соединённых между собой или более сложные функциональные блоки. На этикетках миниблоков изображены условные обозначения элементов или упрощённые электрические схемы их соединения, показано расположение выводов и приведены основные технические характеристики. Миниблоки хранятся в специальном контейнере.Большинство миниблоков комплекта «Теория электрических цепей и основы электроники» содержат по одному элементу электрических цепей. Состав этого набора приведён в табл. 1.1.Таблица 1.1

1.2. Экспериментальная часть

2. Параметры синусоидального напряжения (тока)

2.1. Общие сведения

2.2. Экспериментальная часть

3. Активная мощность цепи синусоидального тока

3.1. Общие сведения

3.2. Экспериментальная часть

4. Цепи синусоидального тока с конденсаторами

4.1. Напряжение и ток конденсатора

4.2. Реактивное сопротивление конденсатора

4.3. Последовательное соединение конденсаторов

4.4. Параллельное соединение конденсаторов

4.5. Реактивная мощность конденсатора

5. Цепи синусоидального с катушками индуктивности

5.1. Напряжение и ток катушки индуктивности

5.2. Реактивное сопротивление катушки индуктивности

5.3. Последовательное соединение катушек индуктивности

5.4. Параллельное соединение катушек индуктивности

5.5. Реактивная мощность катушки индуктивности

6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности

6.2. Параллельное соединение резистора и конденсатора

6.3. Последовательное соединение резистора и катушки индуктивности

6.4. Параллельное соединение резистора и катушки индуктивности

6.5. Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов

6.7. Частотные характеристикипоследовательного резонансного контура

6.8. Частотные характеристики параллельного резонансного контура

6.9. Мощности в цепи синусоидального тока

7. Трансформаторы

7.2. Коэффициент трансформации

7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора

7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора

8. Трехфазные цепи синусоидального тока

8.1. Напряжения в трехфазной цепи

8.2. Трехфазная нагрузка, соединенная по схеме «звезда»

8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»

8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник

9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении

9.1. Общие сведения

9.2. Экспериментальная часть

9.3. Приложение

10. Переходные процессы в линейных электрических цепях

10.1. Переходный процесс в цепи с конденсатором и резисторами

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.3. Затухающие синусоидальные колебания в R-L-C контуре

Литература

5.2.1. Общие сведения



Катушка индуктивности в цепи переменного тока оказывает токоограничивающий эффект благодаря индуктируемой в ней противоЭДС. Этот токоограничивающий эффект принято выражать как индуктивное реактивное сопротивление (индуктивный реактанс) XL.

Величина индуктивного реактанса XL зависит от величины индуктивности катушки, измеряемой в Генри, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем
XL = L = 2fL ,
где XL - реактивное индуктивное сопротивление, Ом,

L - индуктивность катушки, Гн.

Если активное сопротивление катушки мало и им можно пренебречь, то реактивное (индуктивное) сопротивление можно определить через действующие значения или амплитуды напряжения и тока:
XL = UL IL или XL = ULm ILm.

5.2.2. Экспериментальная часть



Задание
Выведите на дисплей виртуального осциллографа кривые тока и напряжения различных катушек индуктивности при различных частотах и постройте зависимость XL = f(f). Соответствующий индуктивный реактанс находится по амплитудным значениям тока и напряжения из осциллограмм и проверяется по формуле XL = L.
Порядок выполнения эксперимента


  • Соберите цепь согласно схеме (рис. 5.2.1.), подсоедините к ее входу регулируемый источник синусоидального напряжения с параметрами U = 5 В, f = 1 кГц.



Рис. 5.2.1.

  • Включите виртуальные приборы V0, A1 и осциллограф.

  • «Подключите» два входа осциллографа к приборам V0 и A1, а остальные отключите.

  • Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока.

  • Снимите с осциллограммы амплитудные значения Um и Im для индуктивностей и частот, указанных в табл. 4.2.1, и занесите их в соответствующие ячейки таблицы.


Таблица 5.2.1

f, кГц

0,5

1

1,5

2




UmL, В

100 мГн
















UmL, В

40 мГн
















UmL, В

10 мГн
















ImL, мА

100 мГн
















ImL, мА

40 мГн
















ImL, мА

10 мГн
















XL =

Um  Im, кОм

100 мГн













40 мГн













10 мГн













XL = L,

Ком

100 мГн













40 мГн













10 мГн

















  • Вычислите величины XL по формулам Um Im и L и занесите их в табл. 5.2.1.

  • Перенесите величины XL на график (рис. 5.2.2) для построения кривой XL = f(f).



Рис. 5.2.2
Вопрос 1: Как зависит индуктивное сопротивление от частоты?

Ответ: ........................
Вопрос 2: Чем объясняется различие значений XL, вычисленных по формулам Um Im и L?

Ответ: ........................


5.3. Последовательное соединение катушек индуктивности




5.3.1. Общие сведения



Когда несколько катушек соединены последовательно (рис. 5.3.1), эквивалентная индуктивность цепи равна сумме индуктивностей отдельных катушек:
LЭ = L1 + L2 + L3 + ...


Рис. 5.3.1

Падения напряжения на отдельных катушках пропорциональны соответствующим индуктивным сопротивлениям и их сумма равна приложенному напряжению U . Ток в любой точке последовательной цепи с катушками один и тот же.

5.3.2. Экспериментальная часть



Задание
Докажите путем измерения тока и напряжения в предположении XL = L, что при последовательном соединении катушек эквивалентная индуктивность цепи равна сумме индуктивностей отдельных катушек.
Порядок выполнения эксперимента


  • Соберите цепь согласно схеме (рис. 5.3.2) и подсоедините регулируемый источник синусоидального напряжения с параметрами U = 5 В и f = 1 кГц.



Рис. 5.3.2.



  • Измерьте с помощью мультиметров или виртуальных приборов А1 и V1 действующие значения тока в цепи, приложенного напряжения и напряжения на каждой катушке. Результаты измерений занесите в табл. 5.3.1.


Таблица 5.3.1

I, мА

U, В

UL1, B

UL2, B

UL3, B



















  • Рассчитайте реактивные сопротивления и индуктивности катушек, эквивалентную индуктивность цепи по данным измерений.


Вычисление индуктивных реактансов:
XL1 = UL1 IL =
XL2 = UL2 IL =
XL3 = UL3 IL =
XЭ = U I =
Вычисление угловой частоты:

= 2f =
Вычисление индуктивностей:


L1 = XL1 =
L2 = XL2 =
L3 = XL3 =
LЭ = XLЭ =

5.4. Параллельное соединение катушек индуктивности




5.4.1. Общие сведения



При параллельном соединении катушек (рис. 5.4.1) эквивалентная индуктивность цепи меньше индуктивности наименьшей катушки. Вычисляется она по формуле:
1/LЭ = 1 (1 L1 + 1 L2+ 1 L3+...).

Рис. 5.4.1
Если последовательно соединены только 2 катушки, общая индуктивность равна
LЭ = L1 L2 (L1 + L2).
Токи в отдельных катушках обратно пропорциональны соответствующим индуктивностям и их сумма равна общему току цепи. Напряжение, приложенное к каждой катушке, одинаково и равно U.

5.4.2. Экспериментальная часть



Задание
Докажите путем измерения токов и напряжений, что эквивалентная индуктивность цепи с параллельным соединением катушек меньше индуктивности наименьшей катушки и что измеренные индуктивные реактансы и индуктивности связаны соотношением:

XL = L
Порядок выполнения эксперимента


  • Соберите цепь согласно схеме (рис. 5.4.2), подсоедините регулируемый источник синусоидального напряжения с параметрами U = 5 В и f = 1 кГц.

  • Измерьте с помощью мультиметра или виртуальных приборов общий ток цепи I,



Рис. 5.4.2
токи параллельных ветвей I1, I2, I3 и падения напряжение U на катушках, занесите данные измерений в табл. 5.4.1

Таблица 5.4.1

U, В

I, мА

I1, мА

I2, мА

I3, мА



















  • Вычислите индуктивные реактансы XLЭ, XL1, XL2, XL3 по формуле XL =U IL.

  • Определите индуктивности отдельных катушек и общую индуктивность цепи по формуле L = XL .


  • Проверьте вычислениями величину индуктивности LЭ, найденную экспериментально.


Вычисление индуктивных реактансов:
XL1 = UL1 IL1 =

XL2 = UL2 IL2 =

XL3 = UL3 IL3 =

XLЭ = U I =
Вычисление индуктивностей:

L1 = XL1 =

L2 = XL2 =

L3 = XL3 =

LЭ = XLЭ =
Проверка общей индуктивности расчетом:
LЭ = 1 (1 L1 + 1 L2+ 1 L3) =.