Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 589

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1. Описание комплекта типового лабораторного оборудования «Теоретические основы электротехники» 1.1. Общие сведения 1.1.1. Компоновка оборудования Общая компоновка типового комплекта оборудования в стендовом исполнении показано на рис. 1.1. На лабораторном столе закреплена рама, в которой устанавливаются отдельные блоки. Расположение блоков жёстко не фиксировано. Оно может изменяться для удобства проведения того или иного конкретного эксперимента. Наборная панель, на которой собирается электрическая цепь из миниблоков может устанавливаться и непосредственно на столе. Рис.1.1В выдвижных ящиках хранятся наборы миниблоков и устройств, соединительные провода, перемычки и кабели, методические материалы. Один из наборов миниблоков показан на рис. 1.1 на столе. Ящики имеют встроенные замки. 1.1.2. Блок генераторов напряжений Лицевая панель блока генераторов напряжений показана на рис. 1.2. Блок состоит из генератора синусоидальных напряжений, генератора напряжений специальной формы и генератора постоянных напряжений.Все генераторы включаются и выключаются общим выключателем «СЕТЬ» и защищены от внутренних коротких замыканий плавким предохранителем с номинальным током 2 А. Рис.1.2На лицевой панели блока указаны номинальные напряжение и ток каждого источника напряжения, а также диапазоны изменения регулируемых выходных величин. Все источники напряжений гальванически изолированы друг от друга и от корпуса блока и защищены от перегрузок и внешних коротких замыканий самовосстанавливающимися предохранителями с номинальным током 0,2 А. О срабатывании предохранителя свидетельствует индикатор «I >».Генератор синусоидальных напряжений содержит однофазный источник напряжения 24 В (вторичная обмотка питающего трансформатора 220/24 В) и трёхфазный стабилизированный по амплитуде выходного напряжения преобразователь однофазного напряжения в трёхфазное. Выходное сопротивление трёхфазного источника в рабочем диапазоне токов близко к нулю.Генератор напряжений специальной формы вырабатывает на выходе синусоидальный, прямоугольный двухполярный или прямоугольный однополярный сигнал в зависимости от положения переключателя «ФОРМА».Регулировка выходной частоты генератора напряжений специальной формы производится энкодером-потенциометром. Регулировка выходной частоты возможна в двух режимах:- Режим точной настройки частоты с малым шагом (величина шага зависит от величины частоты). При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора мигает.- Режим подекадного переключения выходной частоты. При повороте энкодера-потенциометра на один шаг выходная частота меняется в 10 раз. При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора постоянно горит.Переключение между режимами производится путем нажатия ручки энкодера-потенциометра.При повороте ручки энкодера меняется выходная частота и ее величина отображается на индикаторе с размерностью, показываемой светодиодами.Переключение формы выходного напряжения производится путем нажатия на кнопку ФОРМА. При этом соответствующий светодиод показывает форму выходного напряжения.Амплитуда сигнала регулируется потенциометром «АМПЛИТУДА».Генератор постоянных напряжений содержит три источника стабилизированного напряжения 15 В, гальванически изолированных друг от друга. Выходное напряжение одного из этих источников регулируется от 0 до 15 В десятиоборотным потенциометром. Выходные сопротивления этих источников также близки к нулю и все они допускают режим работы с обратным током (режим потребления энергии). Для получения постоянных напряжений больше 15 В они могут соединяться последовательно. Для исключения источников из собранной схемы цепи используются переключатели (тумблеры). Наборная панель Наборная панель служит для расположения на ней миниблоков в соответствии со схемой данного опыта. На рис. 1.3 показан фрагмент наборной панели с собранной схемой. Рис.1.3Гнёзда на этой панели соединены в узлы, как показано на ней линями. Поэтому часть соединений выполняется автоматически при установке миниблоков в гнёзда панели. Остальные соединения выполняются соединительными проводами и перемычками. Так на фрагменте цепи, показанной на рис.1.3, напряжение подаётся проводами через выключатель к одной из обмоток трансформатора. К другой обмотке подключены резистор и конденсатор, соединённые последовательно.Для измерения токов в ветвях цепи удаляется одна из перемычек и вместо неё в образовавшийся разрыв включается амперметр. Для измерения напряжений на элементах цепи параллельно рассматриваемому элементу включается вольтметр. Набор миниблоков по теории электрических цепей и основам электроники Миниблоки из представляют собой отдельные элементы электрических цепей (резисторы, конденсаторы, индуктивности диоды, транзисторы и т.п.), помещённые в прозрачные корпуса, имеющие штыри для соединения с гнёздами наборной панели. Некоторые миниблоки содержат несколько элементов, соединённых между собой или более сложные функциональные блоки. На этикетках миниблоков изображены условные обозначения элементов или упрощённые электрические схемы их соединения, показано расположение выводов и приведены основные технические характеристики. Миниблоки хранятся в специальном контейнере.Большинство миниблоков комплекта «Теория электрических цепей и основы электроники» содержат по одному элементу электрических цепей. Состав этого набора приведён в табл. 1.1.Таблица 1.1

1.2. Экспериментальная часть

2. Параметры синусоидального напряжения (тока)

2.1. Общие сведения

2.2. Экспериментальная часть

3. Активная мощность цепи синусоидального тока

3.1. Общие сведения

3.2. Экспериментальная часть

4. Цепи синусоидального тока с конденсаторами

4.1. Напряжение и ток конденсатора

4.2. Реактивное сопротивление конденсатора

4.3. Последовательное соединение конденсаторов

4.4. Параллельное соединение конденсаторов

4.5. Реактивная мощность конденсатора

5. Цепи синусоидального с катушками индуктивности

5.1. Напряжение и ток катушки индуктивности

5.2. Реактивное сопротивление катушки индуктивности

5.3. Последовательное соединение катушек индуктивности

5.4. Параллельное соединение катушек индуктивности

5.5. Реактивная мощность катушки индуктивности

6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности

6.2. Параллельное соединение резистора и конденсатора

6.3. Последовательное соединение резистора и катушки индуктивности

6.4. Параллельное соединение резистора и катушки индуктивности

6.5. Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов

6.7. Частотные характеристикипоследовательного резонансного контура

6.8. Частотные характеристики параллельного резонансного контура

6.9. Мощности в цепи синусоидального тока

7. Трансформаторы

7.2. Коэффициент трансформации

7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора

7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора

8. Трехфазные цепи синусоидального тока

8.1. Напряжения в трехфазной цепи

8.2. Трехфазная нагрузка, соединенная по схеме «звезда»

8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»

8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник

9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении

9.1. Общие сведения

9.2. Экспериментальная часть

9.3. Приложение

10. Переходные процессы в линейных электрических цепях

10.1. Переходный процесс в цепи с конденсатором и резисторами

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.3. Затухающие синусоидальные колебания в R-L-C контуре

Литература

4.2. Реактивное сопротивление конденсатора




4.2.1. Общие сведения



Конденсатор в цепи синусоидального тока оказывает токоограничивающий эффект, который вызван встречным действием напряжения при изменении знака заряда. Этот токоограничивающий эффект принято выражать как емкостное реактивное сопротивление (емкостной реактанс) XC.

Величина емкостного реактанса XC зависит от величины емкости конденсатора, измеряемой в Фарадах, и частоты приложенного напряжения переменного тока. В случае синусоидального напряжения имеем
XC = 1 (C) = 1 (2fC),
где XC - реактивное емкостное сопротивление, Ом,

C - емкость конденсатора, Ф,

= 2f - угловая частота синусоидального напряжения (тока).

Когда известны действующие значения тока в конденсаторе и падения напряжения на нем от этого тока, реактивное емкостное сопротивление можно вычислить по закону Ома:
XC = UCmICm или XC = UCIC.
Емкостному реактансу часто присваивают знак «-» в отличие от индуктивного реактанса, которому приписывают знак «+».

4.2.2. Экспериментальная часть



Задание
Выведите на экран виртуального осциллографа кривые тока и напряжения различных конденсаторов емкостью 0,22 , 0,47 , 1 мкФ. Определите соответствующие реактивные сопротивления по формулам XC = 1 (2fC) и XC= UCIC.
Порядок проведения эксперимента


  • Соберите цепь согласно схеме (рис. 4.2.1), установите синусоидальное напряжение U = 5 В и f = 1 кГц на выходе регулируемого источника, затем присоедините источник к входным зажимам цепи.

  • Включите виртуальные приборы V0, A1 и осциллограф.

  • «Подключите» два входа осциллографа к приборам V0 и A1, а остальные отключите.

  • Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока.




Рис. 4.2.1


  • Снимите с осциллограмм или измерьте виртуальными приборами амплитудные значения напряжений Um и тока Im для емкостей и частот, указанных в табл. 4.2.1, и занесите их в соответствующие ячейки таблицы.


Таблица 4.2.1

f, кГц

1

0,8

0,6

0,4

Um, В

1,0 мкФ













Um, В

0,47 мкФ













Um, В

0,22 мкФ













Im, мА

1,0 мкФ













Im, мА

0,47 мкФ













Im, мА

0,22 мкФ













XC =

UmIm, кОм

1,0 мкФ
















0,47 мкФ













0,22 мкФ













XC =

1 (C), кОм

1,0 мкФ













0,47 мкФ













0,22 мкФ




















  • Вычислите величины XC по формулам UmIm и 1 (C) занесите их в табл. 4.2.1. Сравните результаты.




  • Перенесите величины XC на график (рис.4.2.2) для построения кривой XC = f(f).




  • Проверьте расчетным путем величину реактанса XC конденсатора емкостью С = 0,47 мкФ при частоте f = 600 Гц непосредственным измерением виртуальным прибором «Реактивное сопротивление».




Рис. 4.2.2
Вопрос: Как зависит емкостное сопротивление от частоты?
Ответ: ........................


4.3. Последовательное соединение конденсаторов



4.3.1. Общие сведения



Когда несколько конденсаторов соединены последовательно, эквивалентная емкость цепи меньше емкости наименьшего конденсатора. Вычисляется она по формуле:
CЭ = 1 (1 C1 + 1 C2 + 1 C3 +...).
Если последовательно соединено только 2 конденсатора, общая емкость равна
CЭ = C1 C2 (C1 + C2).
Падения напряжения на отдельных конденсаторах обратно пропорциональны соответствующим емкостям и их сумма равна общему напряжению Uc. Ток в любой точке последовательной цепи с конденсаторами один и тот же.

4.3.2. Экспериментальная часть



Задание
Убедитесь путем измерения тока и напряжения, что при последовательном соединении конденсаторов общая емкость цепи меньше емкости наименьшего конденсатора.
Порядок выполнения эксперимента


  • Соберите цепь согласно схеме (рис. 4.3.1) и подсоедините регулируемый источник синусоидального напряжения с параметрами U = 5 В и f = 2 кГц.



Рис. 4.3.1

  • Измерьте с помощью мультиметра или виртуальных приборов А1 и V1 действующие значения тока в цепи, приложенного напряжения и напряжения на каждом конденсаторе. Результаты измерений занесите в табл. 4.3.1

Таблица 4.3.1

I, мА

U, В

UC1, В

UC2, В

UC3, В



















  • Рассчитайте емкостные реактансы и емкости.

  • Проверьте эквивалентную емкость цепи расчетом.

Вычисление емкостных реактансов:
XC1 = UC1 IС =
XC2 = UC2 IС =
X
C3 = UC3 IС =
XЭ = U I =

Вычисление угловой частоты:

= 2 f =

Вычисление емкостей:

C1 = 1 ( XC1) =
C2 = 1 ( XC2) =
C3 = 1 ( XC3) =
CЭ = 1 ( XЭ ) =
Проверка эквивалентной емкости цепи расчетом:
1/CЭ = 1 (1 C1 + 1 C2 + 1 C3) =


  • Проверьте эквивалентные реактанс и емкость цепи непосредственными измерениями с помощью виртуальных приборов. Для этого включите блок «Приборы II». В первом приборе выберите функцию «реактивное сопротивление Х» и «подключите» его к V1 и А1. Во втором приборе выберите функцию «Частотомер» и «подключите» его к V1. Третий прибор запрограммируйте на вычисление емкости. Для этого введите аргументы расчетной формулы х7 и х8 (т.е. Х и f) и саму расчетную формулу:


y = -1 / (2*3,14*x8*x7)
Нажмите клавишу «Начать счет» и Вы получите результат вычисления – емкость в фарадах. Переведите ее в микрофарады и запишите результат:
СЭ = … мкФ.