Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 578

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1. Описание комплекта типового лабораторного оборудования «Теоретические основы электротехники» 1.1. Общие сведения 1.1.1. Компоновка оборудования Общая компоновка типового комплекта оборудования в стендовом исполнении показано на рис. 1.1. На лабораторном столе закреплена рама, в которой устанавливаются отдельные блоки. Расположение блоков жёстко не фиксировано. Оно может изменяться для удобства проведения того или иного конкретного эксперимента. Наборная панель, на которой собирается электрическая цепь из миниблоков может устанавливаться и непосредственно на столе. Рис.1.1В выдвижных ящиках хранятся наборы миниблоков и устройств, соединительные провода, перемычки и кабели, методические материалы. Один из наборов миниблоков показан на рис. 1.1 на столе. Ящики имеют встроенные замки. 1.1.2. Блок генераторов напряжений Лицевая панель блока генераторов напряжений показана на рис. 1.2. Блок состоит из генератора синусоидальных напряжений, генератора напряжений специальной формы и генератора постоянных напряжений.Все генераторы включаются и выключаются общим выключателем «СЕТЬ» и защищены от внутренних коротких замыканий плавким предохранителем с номинальным током 2 А. Рис.1.2На лицевой панели блока указаны номинальные напряжение и ток каждого источника напряжения, а также диапазоны изменения регулируемых выходных величин. Все источники напряжений гальванически изолированы друг от друга и от корпуса блока и защищены от перегрузок и внешних коротких замыканий самовосстанавливающимися предохранителями с номинальным током 0,2 А. О срабатывании предохранителя свидетельствует индикатор «I >».Генератор синусоидальных напряжений содержит однофазный источник напряжения 24 В (вторичная обмотка питающего трансформатора 220/24 В) и трёхфазный стабилизированный по амплитуде выходного напряжения преобразователь однофазного напряжения в трёхфазное. Выходное сопротивление трёхфазного источника в рабочем диапазоне токов близко к нулю.Генератор напряжений специальной формы вырабатывает на выходе синусоидальный, прямоугольный двухполярный или прямоугольный однополярный сигнал в зависимости от положения переключателя «ФОРМА».Регулировка выходной частоты генератора напряжений специальной формы производится энкодером-потенциометром. Регулировка выходной частоты возможна в двух режимах:- Режим точной настройки частоты с малым шагом (величина шага зависит от величины частоты). При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора мигает.- Режим подекадного переключения выходной частоты. При повороте энкодера-потенциометра на один шаг выходная частота меняется в 10 раз. При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора постоянно горит.Переключение между режимами производится путем нажатия ручки энкодера-потенциометра.При повороте ручки энкодера меняется выходная частота и ее величина отображается на индикаторе с размерностью, показываемой светодиодами.Переключение формы выходного напряжения производится путем нажатия на кнопку ФОРМА. При этом соответствующий светодиод показывает форму выходного напряжения.Амплитуда сигнала регулируется потенциометром «АМПЛИТУДА».Генератор постоянных напряжений содержит три источника стабилизированного напряжения 15 В, гальванически изолированных друг от друга. Выходное напряжение одного из этих источников регулируется от 0 до 15 В десятиоборотным потенциометром. Выходные сопротивления этих источников также близки к нулю и все они допускают режим работы с обратным током (режим потребления энергии). Для получения постоянных напряжений больше 15 В они могут соединяться последовательно. Для исключения источников из собранной схемы цепи используются переключатели (тумблеры). Наборная панель Наборная панель служит для расположения на ней миниблоков в соответствии со схемой данного опыта. На рис. 1.3 показан фрагмент наборной панели с собранной схемой. Рис.1.3Гнёзда на этой панели соединены в узлы, как показано на ней линями. Поэтому часть соединений выполняется автоматически при установке миниблоков в гнёзда панели. Остальные соединения выполняются соединительными проводами и перемычками. Так на фрагменте цепи, показанной на рис.1.3, напряжение подаётся проводами через выключатель к одной из обмоток трансформатора. К другой обмотке подключены резистор и конденсатор, соединённые последовательно.Для измерения токов в ветвях цепи удаляется одна из перемычек и вместо неё в образовавшийся разрыв включается амперметр. Для измерения напряжений на элементах цепи параллельно рассматриваемому элементу включается вольтметр. Набор миниблоков по теории электрических цепей и основам электроники Миниблоки из представляют собой отдельные элементы электрических цепей (резисторы, конденсаторы, индуктивности диоды, транзисторы и т.п.), помещённые в прозрачные корпуса, имеющие штыри для соединения с гнёздами наборной панели. Некоторые миниблоки содержат несколько элементов, соединённых между собой или более сложные функциональные блоки. На этикетках миниблоков изображены условные обозначения элементов или упрощённые электрические схемы их соединения, показано расположение выводов и приведены основные технические характеристики. Миниблоки хранятся в специальном контейнере.Большинство миниблоков комплекта «Теория электрических цепей и основы электроники» содержат по одному элементу электрических цепей. Состав этого набора приведён в табл. 1.1.Таблица 1.1

1.2. Экспериментальная часть

2. Параметры синусоидального напряжения (тока)

2.1. Общие сведения

2.2. Экспериментальная часть

3. Активная мощность цепи синусоидального тока

3.1. Общие сведения

3.2. Экспериментальная часть

4. Цепи синусоидального тока с конденсаторами

4.1. Напряжение и ток конденсатора

4.2. Реактивное сопротивление конденсатора

4.3. Последовательное соединение конденсаторов

4.4. Параллельное соединение конденсаторов

4.5. Реактивная мощность конденсатора

5. Цепи синусоидального с катушками индуктивности

5.1. Напряжение и ток катушки индуктивности

5.2. Реактивное сопротивление катушки индуктивности

5.3. Последовательное соединение катушек индуктивности

5.4. Параллельное соединение катушек индуктивности

5.5. Реактивная мощность катушки индуктивности

6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности

6.2. Параллельное соединение резистора и конденсатора

6.3. Последовательное соединение резистора и катушки индуктивности

6.4. Параллельное соединение резистора и катушки индуктивности

6.5. Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов

6.7. Частотные характеристикипоследовательного резонансного контура

6.8. Частотные характеристики параллельного резонансного контура

6.9. Мощности в цепи синусоидального тока

7. Трансформаторы

7.2. Коэффициент трансформации

7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора

7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора

8. Трехфазные цепи синусоидального тока

8.1. Напряжения в трехфазной цепи

8.2. Трехфазная нагрузка, соединенная по схеме «звезда»

8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»

8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник

9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении

9.1. Общие сведения

9.2. Экспериментальная часть

9.3. Приложение

10. Переходные процессы в линейных электрических цепях

10.1. Переходный процесс в цепи с конденсатором и резисторами

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.3. Затухающие синусоидальные колебания в R-L-C контуре

Литература




f, Гц

X, Ом

Z, Ом

I, мА

IC, мА

IL, мА

, град





















Таблица 6.7.1.



6.9. Мощности в цепи синусоидального тока

6.9.1. Общие сведения



На рис. 6.9.1а изображена произвольная пассивная цепь синусоидального тока с двумя зажимами для подключения источника питания (пассивный двухполюсник).

В общем случае ток и напряжение на входе этой цепи сдвинуты по фазе на угол :

u=Umsin(t); i=Imsin(t-).
Мгновенная мощность, потребляемая цепью от источника:
p=ui= UmImsin(t)sin(t-)=UIcos-UIcos(2t-.
График изменения этой мощности представлен на рис. 6.9.1.б вместе с графиками изменения тока и напряжения. Мощность колеблется с двойной частотой. Большую часть периода она имеет положительное значение, а меньшую – отрицательное. Отрицательное значение мощности свидетельствует о возврате части накопленной в конденсаторах и катушках энергии в питающий цепь источник энергии.

Среднее значение потребляемой мощности:
P=UIcosR
называется активной мощностью. Она характеризует среднюю скорость преобразования электрической энергии в другие виды энергии. Потребляемая в пассивной цепи активная мощность имеет всегда положительное значение. Она измеряется в ваттах (Вт).

Амплитуда переменной составляющей мощности:
S=UI=I2Z
называется полной мощностью. Она характеризует максимальную мощность, на которую должен быть рассчитан источник для питания данной цепи. Её иногда называют кажущейся, габаритной или аппаратной мощностью. Единицей её измерения является вольт-ампер (ВА)
Рис. 6.9.1.

Величина Q=UIsin2Xназывается реактивной мощностью. Она характеризует максимальную скорость обмена энергии между источником и цепью. Она может быть как положительной (при >0, т.е.в индуктивной цепи), так и отрицательной (при <0, т.е. в ёмкостной цепи). В связи с этим иногда говорят, что индуктивность потребляет «реактивную энергию», а ёмкость вырабатывает её. Реактивная мощность измеряется в вольт-амперах реактивных (ВАр).



В электрической цепи синусоидального тока выполняется баланс как активных, так и реактивных (но не полных!) мощностей, т. е. сумма мощностей всех источников равна сумме мощностей всех потребителей:
Pист .= Pпотр.; Qист .= Qпотр..
Соотношения между различными мощностями в цепи синусоидального тока можно наглядно представить в виде треугольника мощностей (рис. 6.9.2).


Рис.6.9.2

6.9.2. Экспериментальная часть



Задание
Измерьте с помощью виртуальных приборов мощности в цепи синусоидального тока . Расчётом проверьте баланс активных и реактивных мощностей.
Порядок выполнения работы


  • Измерьте омметром активное сопротивление катушки индуктивности 40мГн:

.

Rк= Ом.


  • Вычислите реактивные сопротивления катушки L=40 мГн и конденсатора
    С=1 мкФ:


XL=2fL= Ом;
XC=1/2fC= Ом.


  • Соберите цепь согласно схеме (рис. 6.9.3), включив в неё виртуальные приборы V1 и A1 и безразлично виртуальные или реальные А2 и А3.

  • Подайте на схему синусоидальное напряжение 500 Гц и установите максимальную амплитуду, которую может дать генератор.

  • Активизируйте виртуальные приборы: для измерения напряжения и тока на входе цепи, а также активной и реактивной мощности источника.


Примечание:

Избегайте включать одновременно большое количество виртуальных приборов в основном блоке. Это уменьшает количество отсчётов и снижает точность измерений!


  • Запишите в табл 6.9.1 значения токов IRL, IR, IC и мощностей Рист и Qист.



Рис.6.9.3.
Таблица. 6.9.1

Ветвь

RкL

R

C


Баланс мощностей, мВт, мВАр

I, мА










Р=I2R,мВт







0

Рист




Pпотр




Q=I2X, мВАр




0




Qист




Qпотр








  • Вычислите по приведённым в табл. формулам значения активной и реактивной мощностей каждого потребителя. Вычислите сумму активных и алгебраическую сумму реактивных мощностей их суммы и проверьте баланс мощностей.


7. Трансформаторы




Введение


Трансформатор состоит из двух или большего числа катушек (обмоток), магнитная связь, между которыми обеспечивается с помощью ферромагнитного сердечника. Трансформаторы используются для преобразования и согласования напряжений, токов и сопротивлений, а также для развязывания электрических цепей (гальваническая развязка).

В идеальном трансформаторе, то есть в трансформаторе без потерь, потребляемая им мощность равна мощности отдаваемой. В реальности, однако, имеют место потери мощности в меди обмоток (в омических сопротивлениях обмоток) и в сердечнике трансформатора, поэтому резистору нагрузки отдается только часть потребляемой трансформатором мощности.



7.1. Коэффициент магнитной связи

7.1.1. Общие сведения



Чтобы обеспечить требуемую магнитную связь между первичной и вторичной обмотками трансформатора, их помещают на общем сердечнике.

Рис. 7.1

Когда по первичной обмотке W1 протекает ток I1, то большая часть создаваемого им магнитного потока Ф0 сцепляется также и с витками вторичной катушки W2. Однако часть создаваемого первой катушкой потока ФS замыкается, минуя вторую катушку. Эта часть потока называется потоком рассеяния.

Отношение
КСВ = Ф0 / (Ф0 + ФS)
называется коэффициентом магнитной связи. Его можно выразить через напряжения U1 и U2 при холостом ходе и число витков:


или через индуктивности и взаимную индуктивность
.
В идеальном трансформаторе коэффициент связи стремится к единице, однако равным или больше единицы он быть не может.

Во избежание искажения сигналов при их трансформировании и для исключения преждевременного магнитного насыщения материала сердечника постоянным током коэффициент связи уменьшают, разрывая сердечник (создавая воздушный зазор).

7.1.2. Экспериментальная часть




Задание


Измеряя напряжения, определите коэффициент магнитной связи между катушками

  • при наличии замкнутого сердечника,

  • при наличии сердечника с зазором,

  • при наличии половины сердечника,

  • при отсутствии сердечника.


Порядок выполнения эксперимента


  • Р
    W1

    900

    W2

    900

    первичная

    обмотка
    азместите первичную и вторичную катушки, имеющие по 900 витков каждая, на разъемном сердечнике, состоящем из двух половин, как показано на рис. 7.1.1.


вторичная

обмотка


Рис. 7.1.1.


  • П
    одсоедините источник синусоидального напряжения к выводам первичной обмотки согласно схеме (рис.7.1.2) и установите напряжение U1 = 6…7 В, f = 1 кГц.


Рис. 7.1.2.


  • Измерьте мультиметром первичное и вторичное напряжения и занесите результат в таблицу 7.1.1 (строка «При наличии замкнутого сердечника»). Вычислите КСВ.


Таблица 7.1.1




U1, В

U2, В

КСВ = U2/U1

При наличии замкнутого сердечника










При наличии сердечника с воздушным зазором










При наличии половины сердечника










При отсутствии сердечника












  • Для измерения напряжений при наличии сердечника с зазором поместите квадратики плотной бумаги между верхней и нижней половинами разъемного сердечника, чтобы имитировать воздушный зазор.




  • Удалите одну подкову разъемного сердечника и повторите опыт.




  • Удалите сердечник полностью и заполните последнюю строку табл. 7.1.1.



Вопрос: Почему изменяется вторичное напряжение?
Ответ: ………………..