Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 567

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Содержание

Введение

1. Описание комплекта типового лабораторного оборудования «Теоретические основы электротехники» 1.1. Общие сведения 1.1.1. Компоновка оборудования Общая компоновка типового комплекта оборудования в стендовом исполнении показано на рис. 1.1. На лабораторном столе закреплена рама, в которой устанавливаются отдельные блоки. Расположение блоков жёстко не фиксировано. Оно может изменяться для удобства проведения того или иного конкретного эксперимента. Наборная панель, на которой собирается электрическая цепь из миниблоков может устанавливаться и непосредственно на столе. Рис.1.1В выдвижных ящиках хранятся наборы миниблоков и устройств, соединительные провода, перемычки и кабели, методические материалы. Один из наборов миниблоков показан на рис. 1.1 на столе. Ящики имеют встроенные замки. 1.1.2. Блок генераторов напряжений Лицевая панель блока генераторов напряжений показана на рис. 1.2. Блок состоит из генератора синусоидальных напряжений, генератора напряжений специальной формы и генератора постоянных напряжений.Все генераторы включаются и выключаются общим выключателем «СЕТЬ» и защищены от внутренних коротких замыканий плавким предохранителем с номинальным током 2 А. Рис.1.2На лицевой панели блока указаны номинальные напряжение и ток каждого источника напряжения, а также диапазоны изменения регулируемых выходных величин. Все источники напряжений гальванически изолированы друг от друга и от корпуса блока и защищены от перегрузок и внешних коротких замыканий самовосстанавливающимися предохранителями с номинальным током 0,2 А. О срабатывании предохранителя свидетельствует индикатор «I >».Генератор синусоидальных напряжений содержит однофазный источник напряжения 24 В (вторичная обмотка питающего трансформатора 220/24 В) и трёхфазный стабилизированный по амплитуде выходного напряжения преобразователь однофазного напряжения в трёхфазное. Выходное сопротивление трёхфазного источника в рабочем диапазоне токов близко к нулю.Генератор напряжений специальной формы вырабатывает на выходе синусоидальный, прямоугольный двухполярный или прямоугольный однополярный сигнал в зависимости от положения переключателя «ФОРМА».Регулировка выходной частоты генератора напряжений специальной формы производится энкодером-потенциометром. Регулировка выходной частоты возможна в двух режимах:- Режим точной настройки частоты с малым шагом (величина шага зависит от величины частоты). При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора мигает.- Режим подекадного переключения выходной частоты. При повороте энкодера-потенциометра на один шаг выходная частота меняется в 10 раз. При работе энкодера-потенциометра в этом режиме светодиод, показывающий форму выходного напряжения генератора постоянно горит.Переключение между режимами производится путем нажатия ручки энкодера-потенциометра.При повороте ручки энкодера меняется выходная частота и ее величина отображается на индикаторе с размерностью, показываемой светодиодами.Переключение формы выходного напряжения производится путем нажатия на кнопку ФОРМА. При этом соответствующий светодиод показывает форму выходного напряжения.Амплитуда сигнала регулируется потенциометром «АМПЛИТУДА».Генератор постоянных напряжений содержит три источника стабилизированного напряжения 15 В, гальванически изолированных друг от друга. Выходное напряжение одного из этих источников регулируется от 0 до 15 В десятиоборотным потенциометром. Выходные сопротивления этих источников также близки к нулю и все они допускают режим работы с обратным током (режим потребления энергии). Для получения постоянных напряжений больше 15 В они могут соединяться последовательно. Для исключения источников из собранной схемы цепи используются переключатели (тумблеры). Наборная панель Наборная панель служит для расположения на ней миниблоков в соответствии со схемой данного опыта. На рис. 1.3 показан фрагмент наборной панели с собранной схемой. Рис.1.3Гнёзда на этой панели соединены в узлы, как показано на ней линями. Поэтому часть соединений выполняется автоматически при установке миниблоков в гнёзда панели. Остальные соединения выполняются соединительными проводами и перемычками. Так на фрагменте цепи, показанной на рис.1.3, напряжение подаётся проводами через выключатель к одной из обмоток трансформатора. К другой обмотке подключены резистор и конденсатор, соединённые последовательно.Для измерения токов в ветвях цепи удаляется одна из перемычек и вместо неё в образовавшийся разрыв включается амперметр. Для измерения напряжений на элементах цепи параллельно рассматриваемому элементу включается вольтметр. Набор миниблоков по теории электрических цепей и основам электроники Миниблоки из представляют собой отдельные элементы электрических цепей (резисторы, конденсаторы, индуктивности диоды, транзисторы и т.п.), помещённые в прозрачные корпуса, имеющие штыри для соединения с гнёздами наборной панели. Некоторые миниблоки содержат несколько элементов, соединённых между собой или более сложные функциональные блоки. На этикетках миниблоков изображены условные обозначения элементов или упрощённые электрические схемы их соединения, показано расположение выводов и приведены основные технические характеристики. Миниблоки хранятся в специальном контейнере.Большинство миниблоков комплекта «Теория электрических цепей и основы электроники» содержат по одному элементу электрических цепей. Состав этого набора приведён в табл. 1.1.Таблица 1.1

1.2. Экспериментальная часть

2. Параметры синусоидального напряжения (тока)

2.1. Общие сведения

2.2. Экспериментальная часть

3. Активная мощность цепи синусоидального тока

3.1. Общие сведения

3.2. Экспериментальная часть

4. Цепи синусоидального тока с конденсаторами

4.1. Напряжение и ток конденсатора

4.2. Реактивное сопротивление конденсатора

4.3. Последовательное соединение конденсаторов

4.4. Параллельное соединение конденсаторов

4.5. Реактивная мощность конденсатора

5. Цепи синусоидального с катушками индуктивности

5.1. Напряжение и ток катушки индуктивности

5.2. Реактивное сопротивление катушки индуктивности

5.3. Последовательное соединение катушек индуктивности

5.4. Параллельное соединение катушек индуктивности

5.5. Реактивная мощность катушки индуктивности

6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности

6.2. Параллельное соединение резистора и конденсатора

6.3. Последовательное соединение резистора и катушки индуктивности

6.4. Параллельное соединение резистора и катушки индуктивности

6.5. Последовательное соединение конденсатора и катушки индуктивности. Понятие о резонансе напряжений

6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов

6.7. Частотные характеристикипоследовательного резонансного контура

6.8. Частотные характеристики параллельного резонансного контура

6.9. Мощности в цепи синусоидального тока

7. Трансформаторы

7.2. Коэффициент трансформации

7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора

7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора

8. Трехфазные цепи синусоидального тока

8.1. Напряжения в трехфазной цепи

8.2. Трехфазная нагрузка, соединенная по схеме «звезда»

8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»

8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду

8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник

9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении

9.1. Общие сведения

9.2. Экспериментальная часть

9.3. Приложение

10. Переходные процессы в линейных электрических цепях

10.1. Переходный процесс в цепи с конденсатором и резисторами

10.2. Процессы включения и отключения цепи с катушкой индуктивности

10.3. Затухающие синусоидальные колебания в R-L-C контуре

Литература




Рис 1.16
На любой из пяти входов осциллографа можно подать сигнал с любого входа коннектора. При этом в окне входа осциллографа появляется соответствующее обозначение входа коннектора (виртуального прибора) и появляется луч на экране, цвет которого соответствует цвету фона переключателя исследуемого сигнала.

Масштаб изображения по вертикали устанавливается автоматически и изменяется ступенчато при изменении амплитуды сигнала, но его можно зафиксировать, нажав на кнопку фиксации масштаба (рис.1.16). После этого он меняться не будет. Предусмотрено и ручное плавное изменение масштаба внутри ступени.

О
рганы управления горизонтальным перемещением луча показаны на рис.1.17.
Рис.1.17
В правом верхнем углу осциллографа (рис. 1.13) имеется движок управления степенью сглаживания фильтра (появляется только при его включении), а также меню изменения характеристик графика: непрерывный, ступенчатый, гистограмма, точечный, размер и форма точек, толщина линий и т.п. Меню открывается при щелчке на любом из изображенных там пяти лучей


Рис.1.18
Кнопка «Записать в файл» позволяет записать в файл таблицу мгновенных значений всех подключенных сигналов за один период измерения. Затем их можно прочитать и обработать в программах MathCAD, Excel, Origin и др. После щелчка на этой кнопке появляется окно диалога (рис. 1.18), в котором нужно выбрать диск, папку и имя файла, в который Вы хотите записать данные и. Выбрав имя файла нажмите клавишу «Сохранить»

1
.1.15. Виртуальный псевдоаналоговый прибор



Для наблюдения динамики изменения измеряемой величины более удобным является стрелочный прибор. Поэтому в комплексе «ВП ТОЭ» имеется псевдоаналоговый стрелочный прибор, который может дублировать показания любого из рассмотренных выше цифровых приборов (рис.1.6.8).



Рис.1.19

Он открывается щелчком мыши на строке «Аналоговый прибор» в меню блока «Приборы I» и подключается к любому из восьми приборов х1…х8. На нем имеется также окно выбора типа шкалы и клавиша «Инерционный – Безинерционный», с помощью которой можно замедлить или ускорить движение стрелки. Шкала прибора перенастраивается автоматически при выходе стрелки за ее пределы. Показание стрелки дублируется в цифровом виде в специальном окне прибора.

1.1.16. Виртуальный прибор «Ключ»


Виртуальный прибор «Ключ» предназначен для управления электронными ключами, транзисторами, тиристорами и другими приборами, работающими в ключевом режиме.

Он открывается щелчком на строке «Ключ» в меню блока «Приборы I». Его вид показан на рис. 1.20.

Рис. 1.20
После включения прибора необходимо установить исходное состояние ключей в окнах «Ключ 1» и «Ключ 2». Значение 1 в окне первого ключа соответствует наличию сигнала управления +5В на контакте 4 относительно общего контакта 7 разъема «Управление ключом» на коннекторе, значение 0 – отсутствию сигнала. Значение 1 в окне второго ключа соответствует наличию сигнала +5В на контакте 8 разъема, 0 – отсутствию сигнала. После того, как исходные состояния установлены, они переключаются каждый раз при нажатии клавиши «Переключить».

1.2. Экспериментальная часть



Задание
В электрической цепи с параллельным соединением резистора, конденсатора и катушки индуктивности (рис.1.7.1), проведите измерение тока, напряжения, активной и реактивной мощности цепи.


Рис.1.7.1
Порядок выполнения эксперимента


  • Соберите цепь согласно схеме (рис.1.7.2), включив в нее вместо измерительных приборов соответствующие гнезда коннектора, подсоедините регулируемый источник синусоидального напряжения и установите с помощью мультиметра его параметры: U вблизи нуля, f = 1 кГц.



Рис. 1.7.2


  • Для проведения измерений тока, напряжения, активной и реактивной мощностей воспользуйтесь виртуальными измерительными приборами. Для этого приведите персональный компьютер в рабочее состояние. Запустите программу «ВП ТОЭ», откройте меню и выберите из него пункт «Приборы II».

  • Сделайте необходимые «подключения» виртуальных приборов к коннектору, установите род измеряемых величин и пределы измерения основного блока приборов:

V0 – действующее – 20 В

А1/А2 – действующее – 100 мА

А3/А4 - действующее – 100 мА

  • Увеличьте напряжение источника до 5В и убедитесь, что пределы измерений всех приборов установлены верно. При необходимости скорректируйте их.

  • В блоке «Приборы II» выберите из меню приборы «Активная мощность» и «Реактивная мощность» и «подключите» их к V0 и А1 (тем самым на входы ватт- и варметра подаются напряжение U источника питания и ток I, потребляемый от него всей цепью).

  • Запишите результаты измерений в табл. 1.1.

Таблица 1.1

U, B

I, A

IL, A

IC, A

IR, A

P, Вт

Q, Вар
























Вопрос: Почему I  IR + IL + IC?
Ответ: …..
Вопрос: Почему здесь Q>0 и в каком случае Q будет иметь отрицательное значение?
Ответ: …..

2. Параметры синусоидального напряжения (тока)




2.1. Общие сведения



Переменный ток, в противоположность постоянному току, периодически меняет свое направление. Кривая (функция) переменного тока или напряжения, соответственно, может иметь различную форму. На рис. 2.1 показаны

Рис. 2.1
некоторые из типичных для электротехники и электроники функций. Кроме того, различают однофазные и многофазные переменные напряжения и токи. Например, электроснабжение массовых потребителей осуществляется, как правило, посредством трехфазного тока.

Последующие эксперименты ограничены синусоидальными напряжениями, которые наиболее часто встречаются в электротехнике и электронике.

Эксперименты затрагивают такие параметры как частота, амплитуда, среднеквадратическое (действующее) значение, фазовый сдвиг (угол) и мощность.

Опыты с трехфазными токами проводятся отдельно (разд. 7).

На рис. 2.2 показаны напряжение и ток, как синусоидальные функции времени.




Рис. 2.2
В течение одного периода T напряжение последовательно оказывается равным нулю, положительному максимуму (амплитудное значение) Um, затем нулю, отрицательному максимуму и снова нулю.

Аналогично выглядит график изменения тока, но в общем случае он может быть сдвинут во времени относительно напряжения (отставать от напряжения или опережать его).

Мгновенные значения синусоидальных напряжения u и тока i выражаются так:

u = Um sin (t+u) , i = Im sin (t+i) ,
где u и iначальные фазы напряжения и тока.

Разность фаз напряжения и тока (фазовый сдвиг):
=
u - i.
Другие параметры синусоидальных величин и формулы для их вычисления приведены ниже.

Частота fв Герцах (Гц) выражается как число периодов в секунду
f = 1 T.
Угловая частота в рад  с равна
= 2 f .
Действующие значения синусоидальных тока и напряжения равны
I = Im / 2, U = Um / 2 .