Файл: Учебнометодический комплекс для заочного обучения с применением дистанционных технологий для студентов специальности 190702 Организация и безопасность дорожного движения.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.12.2023
Просмотров: 876
Скачиваний: 1
СОДЕРЖАНИЕ
1.Основы построения локальной сети
1.1.Классификация локальной сети
1.2.Локальные компьютерные сети. Основные определения, классификация топологий
1.3.Основные компоненты компьютерных сетей. Их преимущества и недостатки
1.4.Физическая среда передачи ЭВС, виды применяемых кабелей, их маркировка
1.5.Сетевая карта. Общие принципы, функционирование установка и настройка
2.Безпроводные компьютерные сети
2.2.Сигналы для передачи информации
2.4.Кодирование и защита от ошибок
2.5. Пропускная способность канала
2.6.Методы доступа к среде в беспроводных сетях
2.7.Виды сигналов связи и способы их обработки
3.Основы безопасности компьютерных сетей
3.1 Система защиты от утечек конфиденциальной информации
3.2.Специфика проектов внутренней информационной безопасности
3.4.Практические мероприятия по защите информации
3.7.Шифрование данных в интернет-компьютерной сети
4.1.Территориально распределенные пользователи систематического видеонаблюдения
4.2.Функции видеонаблюдения. Основные элементы и схемы построения
4.3.Технология распознавания автомобильных номеров
5.Автоматизированная система управления движением
5.1. Назначения и функции АСУД
5.3.Современные АСУД. Расширенные возможности
6.1. Классификация дорожных контроллеров
7.1. Назначения и классификация
7.2. Принципы действия основные элементы
7.3. Сравнение различных систем детектора транспорта
8.Спутниковые и радионавигационные системы GPS и Глонасс
8.1.Назначения и принципы работы
8.2. Источники ошибок и основные сегменты
8.3. Современные навигационные системы на автомобильном транспорте
8.4. Современная спутниковая система навигации
8.5. История создания спутниковых навигационных систем
8.6.Среднеорбитные спутниковые навигационные системы СНС GPS
8.8.Точность определения координат объектов
8.10. Проблемы и перспективы автомобильной спутниковой навигации
9.1. Структура интеллектуального АТС
10.1. Общие сведения и характеристика
12.Цифровая радиосвязь стандарта АРСО-25
12.1.Основные определения и элементы
12.6. Шифрование и аутентификация
12.7.Вызовы и управления сетей
Примеры Раций стандарта АРСО 25 отечественного и иностранного производства
Столбики, высокие бордюры, крупные предметы, лежащие на земле, - все это находится вне поля зрения водителя. Как результат - повреждения бампера, случайные царапины, вмятины и расходы на ремонт. Парковочный радар способен своевременно предупредить водителя о приближении не только к крупным препятствиям, но и к малогабаритным объектам и объектам небольшой высоты, что особенно полезно в темное время суток.
Адаптивный круиз-контроль (АСС) умеет не только поддерживать заданную скорость движения, но и может автоматически поддерживать заданное расстояние до впереди идущего автомобиля. Радар, установленный на решетке радиатора, способен распознавать движущиеся впереди (тем же курсом) автомобили. Если полоса свободна, система поддерживает заданную вами скорость. Если же радар распознает автомобиль, движущийся перед вами на более низкой скорости, система автоматически уменьшает подачу топлива в цилиндры двигателя, а при необходимости даже притормаживает машину, используя рабочую тормозную систему.
8.4. Современная спутниковая система навигации
Успехи трех технологий – радиотехники, компьютерной техники и космонавтики позволили создать современную систему навигации – спутниковую.
Существует еще и отечественная система ГЛОНАСС (ГЛОбальная НАвигационная Спутниковая Система), официально принятая в эксплуатацию в 1993 году, но еще не вышедшая на проектную мощность.
Создается европейская система Galileo. Это будет первая система с метровой точностью, создаваемая исключительно для гражданских нужд. Предполагается, что она должна в строй, когда на орбиту выйдут все 30 запланированных спутников (3 из них — резервные).
В систему кроме навигационных спутников входит наземный комплекс управления, содержащий спутниковые часы (они синхронизируются с находящимися на Земле специальными атомными часами), отслеживающий с высокой точностью реальное местоположение спутников, и GPS-приемники.
Объект, находящийся на Земле, при помощи GPS-приемника ловит радиосигналы с трех - четырех спутников системы, синхронизирует с ним свои часы, измеряет время прохождения радиосигнала со спутника и вычисляет расстояние до него. Сопоставляя эти расстояния для трех или четырех видимых спутников с помощью тригонометрических построений, прибор вычисляет свои географические координаты с точностью до нескольких метров.
GPS-приемник — радиоприемное устройство для определения географических координат текущего местоположения антенны приемника. Работает на основе данных о временных задержках прихода радиосигналов излучаемых спутниками группы NAVSTAR. Максимальная точность измерения составляет 3-5 метров, а при наличии корректирующего сигнала от наземной станции – еще точнее. Точность коммерческих GPS-навигаторов составляет от 150 до 3 метров.
Существуют GPS-навигаторы, имеющие собственный процессор для необходимых расчетов, а также дисплей для отображения информации, и GPS-приставки к КПК, смартфонам и ноутбукам.
При использовании GPS-приставки информация выводится на КПК, сотовый телефон или компьютер, к которому подключена эта приставка с помощью навигационного программного обеспечения – навигационных карт.
Навигационная карта – это программа, позволяющая проложить маршрут до какого-нибудь объекта или адреса с учетом правил дорожного движения. Делается это с помощью нескольких нажатий на сенсорный экран GPS-навигатора. Некоторые программы при прокладке маршрута учитывают тип транспортного средства – легковой или грузовой автомобиль. В соответствии с типом транспорта выбирают оптимальный маршрут движения. Для пеших
прогулок карта покажет вам путь через парки, улицы и переулки, а не по автомагистралям и шоссе. Есть карты максимально детализированные – вплоть до номеров домов.
При поездках на автомобиле навигационная программа предупреждает вас о предстоящих маневрах голосом, например: "Через 100 метров поверните направо". При поездках в незнакомый город карта поможет вам найти ближайшую гостиницу, поликлинику, кафе, почту или кинотеатр.
Современные карты получают через Интернет информацию о пробках и заторах на дорогах и в соответствии с ней составляют новый маршрут движения, позволяющий избегать долгого стояния на месте из-за пробок.
Спутниковая навигация применяется в самых различных видах современного транспорта – морском, авиационном, автомобильном и даже при пеших прогулках по лесу.
Рисунок 8.5 GPS - навигатор GARMIN
8.5. История создания спутниковых навигационных систем
Проблема определения своего местоположения на поверхности земли актуальна для человечества уже не одну тысячу лет. Предки современного человека достигли самых удаленных точек почти всех континентов, заселили лежащие посреди океанов острова, преодолели крупнейшие пустыни и уходящие в небо горные вершины. Но как они ориентировались на бесконечных просторах планеты? Первое, что приходит в голову, -использование естественных ориентиров: солнца, луны, звезд. Современный городской (да и сельский) житель растерял практически все знания об окружающем мире, накопленные тысячами поколений предков, и вот почему.
Как-то в журнале «Вокруг света» мне встретилась статья о древних полинезийских мореходах и методах их ориентирования. Перед морским путешественником стояла задача преодолеть 300 км по океану, чтобы попасть в ту или иную часть огромного архипелага, состоящего из тысячи похожих друг на друга островов. Из навигационного вооружения на его судне не было ничего, а Полярная звезда в Южном полушарии не видна…
Оказалось, что ночью абориген наблюдал, как те или иные звезды закатываются в море за кормой его катамарана, а при свете солнца уверенно определял направление волн, подгоняемых дуновением вполне конкретного пассата, рожденного за тысячи миль от суденышка. Где-то на полпути до цели по мере приближения к острову начинал изучать изменение свечения дна океана, а за 50 км - пробовал на вкус морскую воду. В результате применения таких несложных приемов моряк в назначенное время оказывался у цели путешествия, успешно решив задачу поиска иголки (острова) в стоге сена (среди тысячи островов). При этом в поле его зрения отсутствовали такие ориентиры, как береговая линия или другие острова…
Примитивные методы ориентирования в море
На самом деле не только мы, дети XXI века, но и жители городов древней Месопотамии не обладали твердыми знаниями и навыками ориентирования в море. Однако задача преодоления водных преград постоянно требовала от них активных действий. Если при форсировании реки заблудиться было трудно: оба берега постоянно в зоне видимости и можно ориентироваться по складкам местности на обоих берегах (из-за вращения Земли, вернее, из-за кориолисова ускорения один берег всегда несколько выше другого) - то в открытом море потеряться проще простого.
В поисках сырья и рынков сбыта жители междуречья устремились в океан. Перемещаясь от известного побережья к неизвестному, шумерские мореходы запоминали встречающиеся им визуальные образы, в частности особенности строения береговой черты, и расширяли свои познания о прибрежной ойкумене. Подобный метод в XV веке применили португальцы, проложившие за 100 лет дорогу вдоль побережья Африки в богатую товарами Индию. Конечную точку каждого своего плавания они отмечали на берегу каменным столбом - падраном. Каждая последующая экспедиция должна была пройти дальше предшествующей. Соревнование со столбами-падранами продолжалось до тех пор, пока Васко да Гама не обогнул мыс Игольный и не повернул свои корабли на север к столь долгожданной Индии.
Естественно, ориентироваться по береговым знакам, имеющим определенную форму, цвет, а зачастую и надписи, намного легче, чем пытаться различить между собой похожие как близнецы остроконечные вершины прибрежных скал или не менее схожие по своим очертаниям приветливые бухты. Приближенно (на глаз) определив дистанцию и направление по специальным ориентирам на берегу, мореплаватель мог достаточно точно сказать, в какой точке своего путешествия он находится.
Однако подобный метод годился лишь при каботажном (прибрежном) плавании. Но финикийцев оно уже не могло удовлетворять, так как кратчайшее расстояние между двумя торговыми точками зачастую разделяло Средиземное море, а в торговле, как известно, время - деньги. Вероятно, именно финикийцы первыми пустились в дальнее плавание, сознательно потеряв из виду берег. Новые задачи потребовали и новых средств ориентирования в открытом море. В Северном полушарии мореплавателям очень пригодилась Полярная звезда
, расположенная над осью вращения Земли и потому обладающая рядом полезных свойств, а именно: - с высокой точностью (до 1 град) указывает направление на север; широта места, с которого ведется наблюдение, равна высоте Полярной звезды над горизонтом. Собственно, зная направление и определяя даже примитивными способами скорость судна, можно рассчитать с приемлемой погрешностью, в какой точке маршрута находится корабль в тот или иной период плавания.
Однако в северных морях в осенне-зимний период чистое небо - явление достаточно редкое, поэтому изобретенный китайцами магнитный компас (первоначально его устанавливали на сухопутные повозки, передвигаясь по лишенной ориентиров бескрайней степи) весьма пригодился викингам и предопределил заселение ими Исландии, Гренландии и, кратковременно, Северной Америки.
С развитием астрономии, математики и механики люди стали применять получаемые знания для наблюдения за поведением небесных светил. Идея оказалась исключительно простой: для ориентации на поверхности земли достаточно было измерить высоту двух светил (например, звезд), разнесенных по азимуту на 90 градусов. Одинаковая высота звезды могла быть зафиксирована наблюдателем, находящимся на окружности - основании конуса, в верхушке которого и располагалась звезда. Окружности - основания конусов двух звезд - пересекались на земной поверхности в двух точках, разнесенных на тысячи километров друг от друга. Следовательно, для высокоточного определения местоположения наблюдателя на поверхности земли требовалось всего-то - знать с высокой точностью высоту светил в момент измерений и время самого измерения. Появление высокоточных астрономических таблиц, высокоточного измерителя углов - теодолита (позднее - секстанта) и часов с постоянным ходом - хронометра позволило окончательно решить поставленную задачу. Погрешность измерений координат места по светилам не превышала единиц километров.
Применение радиосигналов для определения положения объектов на земле
Понятно, что в XX веке, в условиях значительных скоростей и интенсивного судоходства, отягощенного ведением боевых действий на море, погрешность в десятки километров не могла удовлетворять судоводителей, и в 1943 году на побережье США появляется первая радионавигационная система (РНС) Лоран - А (Loran-A). Принцип ее работы был достаточно прост. Береговые передающие станции излучали радиосигнал в виде пачки импульсов через строго определенные промежутки времени; на судне эти сигналы принимали и путем несложных манипуляций с временем прихода сигналов определяли с погрешностью в несколько километров разность расстояний до двух или более передающих станций (пересечение гипербол), что позволяло судить о местоположении корабля в море.