Файл: Учебнометодический комплекс для заочного обучения с применением дистанционных технологий для студентов специальности 190702 Организация и безопасность дорожного движения.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.12.2023
Просмотров: 849
Скачиваний: 1
СОДЕРЖАНИЕ
1.Основы построения локальной сети
1.1.Классификация локальной сети
1.2.Локальные компьютерные сети. Основные определения, классификация топологий
1.3.Основные компоненты компьютерных сетей. Их преимущества и недостатки
1.4.Физическая среда передачи ЭВС, виды применяемых кабелей, их маркировка
1.5.Сетевая карта. Общие принципы, функционирование установка и настройка
2.Безпроводные компьютерные сети
2.2.Сигналы для передачи информации
2.4.Кодирование и защита от ошибок
2.5. Пропускная способность канала
2.6.Методы доступа к среде в беспроводных сетях
2.7.Виды сигналов связи и способы их обработки
3.Основы безопасности компьютерных сетей
3.1 Система защиты от утечек конфиденциальной информации
3.2.Специфика проектов внутренней информационной безопасности
3.4.Практические мероприятия по защите информации
3.7.Шифрование данных в интернет-компьютерной сети
4.1.Территориально распределенные пользователи систематического видеонаблюдения
4.2.Функции видеонаблюдения. Основные элементы и схемы построения
4.3.Технология распознавания автомобильных номеров
5.Автоматизированная система управления движением
5.1. Назначения и функции АСУД
5.3.Современные АСУД. Расширенные возможности
6.1. Классификация дорожных контроллеров
7.1. Назначения и классификация
7.2. Принципы действия основные элементы
7.3. Сравнение различных систем детектора транспорта
8.Спутниковые и радионавигационные системы GPS и Глонасс
8.1.Назначения и принципы работы
8.2. Источники ошибок и основные сегменты
8.3. Современные навигационные системы на автомобильном транспорте
8.4. Современная спутниковая система навигации
8.5. История создания спутниковых навигационных систем
8.6.Среднеорбитные спутниковые навигационные системы СНС GPS
8.8.Точность определения координат объектов
8.10. Проблемы и перспективы автомобильной спутниковой навигации
9.1. Структура интеллектуального АТС
10.1. Общие сведения и характеристика
12.Цифровая радиосвязь стандарта АРСО-25
12.1.Основные определения и элементы
12.6. Шифрование и аутентификация
12.7.Вызовы и управления сетей
Примеры Раций стандарта АРСО 25 отечественного и иностранного производства
Вопросы для самопроверки
-
Основы построения локальной сети. Классификация -
Локальные компьютерные сети. Основные определения, классификация топологий -
Основные компоненты компьютерных сетей. Их преимущества и недостатки. -
Физическая среда передачи ЭВС, виды применяемых кабелей, их маркировка.
2.Безпроводные компьютерные сети
WI-FI (от английского словосочетания "Wireless Fidelity", которое можно дословно перевести как "высокая точность беспроводной передачи данных") - это современная беспроводная технология соединения компьютеров в локальную сеть и подключения их к Internet. Именно благодаря этой технологии Internet становится мобильным и дает пользователю свободу перемещения не то что в пределах комнаты, но и по всему миру.
С увеличением числа мобильных пользователей возникает острая необходимость в оперативном создании коммуникаций между ними, в обмене данными, в быстром получении информации. Поэтому естественным образом происходит интенсивное развитие технологий беспроводных коммуникаций. Особенно это актуально в отношении беспроводных сетей, или так называемых WLAN-сетей (Wireless Local Area Network). Сети Wireless LAN - это беспроводные сети (вместо обычных проводов в них используются радиоволны). Установка таких сетей рекомендуется там, где развертывание кабельной системы невозможно или экономически нецелесообразно.
Беспроводные сети особенно эффективны на предприятиях, где сотрудники активно перемещаются по территории во время рабочего дня с целью обслуживания клиентов или сбора информации (крупные склады, агентства, офисы продаж, учреждения здравоохранения и др.).
WLAN-сети имеют ряд преимуществ перед обычными кабельными сетями:
- WLAN-сеть можно очень быстро развернуть, что очень удобно при проведении презентаций или в условиях работы вне офиса;
- пользователи мобильных устройств, при подключении к локальным беспроводным сетям, могут легко перемещаться в рамках действующих зон сети;
- скорость современных сетей довольно высока (до 300 Мб/с), что позволяет использовать их для решения очень широкого спектра задач;
- WLAN-сеть может оказаться единственным выходом, если невозможна прокладка кабеля для обычной сети.
Вместе с тем необходимо помнить об ограничениях беспроводных сетей. Это, как правило, все-таки меньшая скорость, подверженность влиянию помех и более сложная схема обеспечения безопасности передаваемой информации.
Сегмент Wi-Fi сети может использоваться как самостоятельная сеть, либо в составе более сложной сети, содержащей как беспроводные, так и обычные проводные сегменты. Wi-Fi сеть может использоваться:
- для беспроводного подключения пользователей к сети;
- для объединения пространственно разнесенных подсетей в одну общую сеть там, где кабельное соединение подсетей невозможно или нежелательно;
- для подключения к сетям провайдера Internet-услуги вместо использования выделенной проводной линии или обычного модемного соединения.
2.1.Основные элементы сети
Для построения беспроводной сети используются Wi-Fi адаптеры и точки доступа.
Адаптер (рис. 2.1) представляет собой устройство, которое подключается через слот расширения PCI, PCMCI, CompactFlash. Существуют также адаптеры с подключением через порт USB 2.0. Wi-Fi адаптер выполняет ту же функцию, что и сетевая карта в проводной сети. Он служит для подключения компьютера пользователя к беспроводной сети. Благодаря платформе Centrino все современные ноутбуки имеют встроенные адаптеры Wi-Fi, совместимые со многими современными стандартами. Wi-Fi адаптерами, как правило, снабжены и КПК (карманные персональные компьютеры), что также позволяет подключать их к беспроводным сетям.
Для доступа к беспроводной сети адаптер может устанавливать связь непосредственно с другими адаптерами. Такая сеть называется беспроводной одноранговой сетью или Ad Hoc ("к случаю"). Адаптер также может устанавливать связь через специальное устройство - точку доступа. Такой режим называется инфраструктурой.
Для выбора способа подключения адаптер должен быть настроен на использование либо Ad Hoc, либо инфраструктурного режима.
Точка доступа (рис. 2.2) представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством.
Через точку доступа осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети. Таким образом, точка доступа играет роль коммутатора.
Рис. 2.1. Адаптеры
Рис. 2.2. Точка доступа
Точка доступа имеет сетевой интерфейс (uplink port), при помощи которого она может быть подключена к обычной проводной сети. Через этот же интерфейс может осуществляться и настройка точки.
Точка доступа может использоваться как для подключения к ней клиентов (базовый режим точки доступа), так и для взаимодействия с другими точками доступа с целью построения распределенной сети (Wireless Distributed System - WDS). Это режимы беспроводного моста "точка-точка" и "точка - много точек", беспроводный клиент и повторитель.
Доступ к сети обеспечивается путем передачи широковещательных сигналов через эфир. Принимающая станция может получать сигналы в диапазоне работы нескольких передающих станций. Станция-приемник использует идентификатор зоны обслуживания (Service Set IDentifier - SSID) для фильтрации получаемых сигналов и выделения того, который ей нужен.
Зоной обслуживания (Service Set - SS) называются логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети.
Базовая зона обслуживания (Basic Service Set - BSS) - это группа станций, которые связываются друг с другом по беспроводной связи. Технология BSS предполагает наличие особой станции, которая называется точкой доступа (access point).
2.2.Сигналы для передачи информации
Если рассматривать сигнал как функцию времени, то он может быть, либо аналоговым, либо цифровым. Аналоговым называется сигнал, интенсивность которого во времени изменяется постепенно. Другими словами, в сигнале не бывает пауз или разрывов. Цифровым называется сигнал, интенсивность которого в течение некоторого периода поддерживается на постоянном уровне, а затем также изменяется на постоянную величину (это определение идеализировано). На рис. 2.3 приведены примеры сигналов обоих типов. Аналоговый сигнал может представлять речь, а цифровой - набор двоичных единиц и нулей.
В общем случае любой цифровой сигнал имеет бесконечную ширину полосы. Если мы попытаемся передать этот сигнал через какую-то среду, передающая система наложит ограничения на ширину полосы, которую можно передать. Более того, для каждой конкретной среды справедливо следующее: чем больше передаваемая полоса, тем больше стоимость передачи. Поэтому, с одной стороны, по экономическим и практическим соображениям следует аппроксимировать цифровую информацию сигналом с ограниченной шириной полосы. С другой стороны, при ограничении ширины полосы возникают искажения, затрудняющие интерпретацию принимаемого сигнала. Чем больше ограничена полоса, тем сильнее искажение сигнала и тем больше потенциальная возможность возникновения ошибок при приеме.
2.3. Передача данных
Определим данные как объекты, передающие смысл, или информацию. Сигналы - это электромагнитное представление данных. Передача - процесс перемещения данных путем распространения сигналов по передающей среде и их обработки.
Рис. 2.3. Аналоговый и цифровой сигналы
Понятия "аналоговые данные" и "цифровые данные" достаточно просты. Аналоговые данные принимают непрерывные значения из некоторого диапазона. Например, звуковые сигналы и видеосигналы представляют собой непрерывно изменяющиеся величины. Цифровые данные, напротив, принимают только дискретные значения; примеры - текст и целые числа.
В системе связи информация распространяется от одной точки к другой посредством электрических сигналов. Аналоговый сигнал представляет собой непрерывно изменяющуюся электромагнитную волну, которая может распространяться через множество сред, в зависимости от частоты; в качестве примеров таких сред можно назвать проводные линии, такие как витая пара и коаксиальный кабель, оптоволокно; этот сигнал также может распространяться через атмосферу или космическое пространство. Цифровой сигнал представляет собой последовательность импульсов напряжения, которые могут передаваться по проводной линии; при этом постоянный положительный уровень напряжения может использоваться для представления двоичного нуля, а постоянный отрицательный уровень - для представления двоичной единицы.
В беспроводной технологии используются цифровые данные и аналоговые сигналы, так как цифровые сигналы затухают сильнее, чем аналоговые.
Цифровые данные можно представить аналоговыми сигналами, применив с этой целью модем (модулятор/демодулятор). Модем или беспроводный адаптер преобразует последовательность двоичных (принимающих два значения) импульсов напряжения в аналоговый сигнал, модулируя их несущей частотой. Получившийся в результате сигнал занимает определенный спектр частот с центром на несущей частоте и может распространяться в окружающую среду. На другом конце линии другой модем или беспроводный адаптер демодулирует сигнал и восстанавливает исходные данные.
Одна из основных проблем построения беспроводных систем - это решение задачи доступа многих пользователей к ограниченному ресурсу среды передачи. Существует несколько базовых методов доступа (их еще называют методами уплотнения или мультиплексирования), основанных на разделении между станциями таких параметров, как пространство, время, частота и код. Задача уплотнения - выделить каждому каналу связи пространство, время, частоту и/или код с минимумом взаимных помех и максимальным использованием характеристик передающей среды.
2.4.Кодирование и защита от ошибок
Существует три наиболее распространенных орудия борьбы с ошибками в процессе передачи данных:
- коды обнаружения ошибок;
- коды с коррекцией ошибок, называемые также схемами прямой коррекции ошибок (Forward Error Correction - FEC);