Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 1013
Скачиваний: 1
СОДЕРЖАНИЕ
3. Понятие организации и архитектуры.
6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.
8. Характеристики микропроцессоров.
10. Циклы обращения к магистрали.
11. Организация обращения к магистрали с синхронным доступом.
12. Организация обращения к магистрали с асинхронным доступом.
14. Механизм пакетной передачи данных по системной магистрали.
16. Адресная память (запоминающие устройства с произвольным доступом).
19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.
20. Кэш-память. Принципы кэширования памяти.
22.Алгоритмы замещения информации в заполненной кэш-памяти.
23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.
24.Концепция виртуальной памяти.
25.Страничная организация виртуальной памяти.
27.Архитектура подсистемы ввода/вывода микропроцессорной системы.
29.Радиальная система прерываний.
30. Векторная система прерываний.
31.Организация прямого доступа к памяти в микропроцессорной системе.
32.Аккумуляторная архитектура микропроцессоров.
33.Регистровая архитектура микропроцессоров.
34. Архитектура микропроцессоров с выделенным доступом к памяти.
35.Стековая архитектура микропроцессоров.
36.Классификация команд микропроцессоров.
37.Структура (форматы) команд микропроцессоров.
38. Регистровые структуры микропроцессоров
39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.
41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.
42.Поддержка операционной системы в микропроцессорах.
43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.
44.Мультипрограммный режим работы микропроцессоров.
46.Резидентная (внутренняя) память микроконтроллеров.
48.Основы организации интерфейсов микропроцессорных систем.
50.Организация параллельной передачи данных.
На эффективность применения кэш-памяти в иерархической системе памяти влияет целый ряд моментов. К наиболее существенным из них можно отнести:
• емкость кэш-памяти;
• размер строки;
• способ отображения основной памяти на кэш-память;
• алгоритм замещения информации в заполненной кэш-памяти;
• алгоритм согласования содержимого основной и кэш-памяти;
• число уровней кэш-памяти.
Емкость кэш-памяти
Выбор емкости кэш-памяти - это всегда определенный компромисс. С одной стороны, кэш-память должна быть достаточно мала, чтобы ее стоимостные показатели были близки к величине, характерной для ОП. С другой – она должна быть достаточно большой, чтобы среднее время доступа в системе, состоящей из основной и кэш-памяти, определялось временем доступа к кэш-памяти. В пользу меньшего размера кэш-памяти имеется больше мотивировок. Так, чем больше емкость кэш-памяти, тем сложнее ее адресация. Как следствие, кэш-память большей емкости работает медленнее по сравнению с кэш-памятью меньшей емкости.
Реальная эффективность использования кэш-памяти зависит от характера решаемых задач, и невозможно заранее определить, какая ее емкость будет действительно оптимальной.
Общая тенденция: по мере увеличения емкости кэш-памяти вероятность промахов сначала существенно снижается, но при достижении определенного значения эффект сглаживается и становится несущественным. Установлено, что для большинства задач близкой к оптимальной является кэш-память емкостью от 1 до 512 Кбайт.
Размер строки
Еще одним важным фактором, влияющим на эффективность использования кэш-памяти, является размер строки. Когда в кэш-память помещается строка, вместе с требуемым словом туда попадают и соседние слова. По мере увеличения размера строки вероятность промахов сначала падает, так как в кэш, согласно принципу локальности, попадает все больше данных, которые понадобятся в ближайшее время. Однако вероятность промахов начинает расти, когда размер строки становится достаточно большим. Объясняется это тем, что:
• большие размеры строки уменьшают общее количество строк, которые можно загрузить в кэш-память, а малое число строк приводит к необходимости частой их смены;
• по мере увеличения размера строки каждое дополнительное слово оказывается дальше от запрошенного, поэтому такое дополнительное слово менее вероятно понадобится в ближайшем будущем.
Зависимость между размером строки и вероятностью промахов во многом определяется характеристиками конкретной программы, из-за чего трудно рекомендовать определенное значение величины строки. Считается, что наиболее близким к оптимальному является размер строки, равный 4-8 адресуемым единицам (словам или байтам). На практике размер строки обычно выбирают равным ширине шины данных, связывающей кэш-память с основной памятью, или размеру пакета, если процессор поддерживает режим пакетной передачи.
2 1. Способы отображения основной памяти на кэш-память. Архитектуры кэш-памяти.
Сущность отображения блока основной памяти на кэш-память состоит в копировании этого блока в какую-то строку кэш-памяти, после чего все обращения к блоку в ОП должны переадресовываться на соответствующую строку кэш-памяти.
Способ отображения должен одновременно отвечает трем требованиям:
1. обеспечивать быструю проверку кэш-памяти на наличие в ней копии блока основной памяти;
2. обеспечивать быстрое преобразование адреса блока ОП в адрес строки кэша;
3. реализовывать достижение первых двух требований наиболее экономичными средствами.
Способы отображения оперативной памяти на кэш-память будем рассматривать на следующем примере:
• емкость основной памяти 256 Кслов;
• емкость кэш-памяти 2 Кслова;
• ОП разбивается на блоки по 16 слов в каждом (размер строки кэш-памяти 16 слов).
Для адресации каждого слова основной памяти необходим 18-разрядный адрес (256К = 218). ОП состоит из 256К/16 = 218/24 = 214 = 16384 блоков. При такой организации 18-разрядный адрес можно условно разделить на две части: младшие 4 разряда определяют адрес слова в пределах блока, а старшие 14 – номер блока. Эти старшие 14 разрядов будем называть
адресом блока основной памяти.
В свою очередь, для адресации любого слова в кэш-памяти требуется 11-разрядный адрес (2К = 211). Кэш-память содержит 2К/16 = 211/24 = 27 = 128 строк. 11-разрядный адрес слова в кэш-памяти также можно представить состоящим из двух частей: адреса слова в строке – 4 младших разряда и адреса строки кэш-памяти – 7 старших разрядов.
Поскольку процессор всегда обращается к ОП (кэш-память для процессора невидима) и формирует для этого 18-разрядный адрес, необходим механизм преобразования такого адреса в 11-разрядный адрес слова в кэш-памяти. Так как расположение слов в блоке ОП и строке кэш-памяти идентично, для доступа к конкретному слову в блоке ОП или в строке кэш-памяти можно использовать младшие 4 разряда 18-разрядного адреса ОП. Следовательно, остается только задача преобразования 14-разрядного адреса блока основной памяти в 7-разрядный адрес строки кэш-памяти.
Известные варианты отображения основной памяти на кэш можно свести к трем видам:
1. прямое отображение;
2. полностью ассоциативное;
3. частично-ассоциативное.
Прямое отображение. При прямом отображении адрес строки i кэш-памяти, на которую может быть отображен блок j из ОП, однозначно определяется выражением:
i = j mod m,
где m – общее число строк в кэш-памяти.
В нашем примере i =j mod 128, где адрес строки i может принимать значения от 0 до 127, а адрес блока – от 0 до 16383.
Такое отображение означает, что на строку кэша с номером i отображается каждый m-й блок ОП, если отсчет начинать с блока, номер которого равен i.
В нашем примере на строку кэша с номером i отображается каждый 128-й блок ОП. При этом основная память условно разбивается на 16384/m = 16384/128 = 128 страниц по m = 128 блоков и представляется в виде двухмерного массива блоков, в котором количество рядов равно числу строк в кэш-памяти, и в каждом ряду находятся блоки, претендующие (переадресуемые) на одну и ту же строку кэш-памяти (рис. 29).
При реализации такого отображения 14-разрядный адрес блока основной памяти условно разбивается на два поля: 7-разрядный номер страницы и 7-разрядное поле строки. Поле строки
указывает на одну из 128 = 27 строку кэш-памяти, в которую может быть отображен блок с заданным адресом. Номер страницы определяет, какой именно блок из закрепленных за данной строкой кэша, отображается в этой строке. Когда блок фактически заносится в память данных кэша, в память тегов кэш-памяти записывается номер страницы, которой принадлежит этот блок. Таким образом, семь старших разрядов адреса блока ОП служат тегом.
Прямое отображение – простой и недорогой в реализации способ отображения. Основной его недостаток – жесткое закрепление за определенными блоками ОП одной строки в кэш-памяти. Поэтому если программа поочередно обращается к словам из двух различных блоков, отображаемых на одну и тут же строку кэш-памяти, то постоянно будет происходить обновление данной строки и вероятность попадания будет низкой.
Полностьюассоциативноеотображение. Полностью ассоциативное отображение позволяет преодолеть недостаток прямого отображения, разрешая загрузку любого блока ОП в любую строку кэш-памяти. При этом в адресе ОП выделяются два поля: поле адреса блока и поле слова в блоке. Когда блок фактически заносится в память данных
кэша, в память тегов кэш-памяти записывается адрес этого блока (рис. 30). Таким образом, адрес блока ОП служат тегом. Для проверки наличия копии блока в кэш-памяти контроллер кэш-памяти должен одновременно проверить теги всех строк на совпадение с полем адреса блока. Этому требованию наилучшим образом отвечает ассоциативная память.
Рисунок 30 – Организация кэш-памяти с полностью ассоциативным отображением Ассоциативное отображение обеспечивает гибкость при выборе строки для вновь записываемого блока. Принципиальный недостаток этого способа – необходимость использования дорогостоящей ассоциативной памяти.
Множественно-ассоциативноеотображение. Множественно-ассоциативное отображение относится к группе методов частично- ассоциативного отображения. Оно является одним из возможных компромиссов, сочетающим достоинства прямого и ассоциативного способов отображения и, в известной мере, свободным от их недостатков.
Кэш-память (как тегов, так и данных) разбивается на v подмножеств (наборов), каждое из которых содержит k строк (принято говорить, что набор имеет k входов). Зависимость между набором и блоками ОП такая же, как и при прямом отображении: на строки, входящие