Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 983

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

3. Понятие организации и архитектуры.

4. Фон-неймановская (принстонская) и гарвардская архитектуры. Организация пространств памяти и ввода/вывода.

5.Организация микропроцессорной системы (МПС): магистрально-модульный принцип организации МПС, основные классы микропроцессорных средств. Микропроцессорная система (МПС)

6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.

7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.

8. Характеристики микропроцессоров.

9. Организация магистрали микропроцессорной системы. Трехшинная магистраль с раздельными шинами передачи адреса и данных.

10. Циклы обращения к магистрали.

11. Организация обращения к магистрали с синхронным доступом.

12. Организация обращения к магистрали с асинхронным доступом.

14. Механизм пакетной передачи данных по системной магистрали.

15. Архитектура подсистемы памяти микропроцессорной системы. Характеристики подсистемы памяти микропроцессорной системы

16. Адресная память (запоминающие устройства с произвольным доступом).

17. Ассоциативная память.

18. Стековая память.

19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.

20. Кэш-память. Принципы кэширования памяти.

22.Алгоритмы замещения информации в заполненной кэш-памяти.

23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.

24.Концепция виртуальной памяти.

25.Страничная организация виртуальной памяти.

27.Архитектура подсистемы ввода/вывода микропроцессорной системы.

29.Радиальная система прерываний.

30. Векторная система прерываний.

31.Организация прямого доступа к памяти в микропроцессорной системе.

32.Аккумуляторная архитектура микропроцессоров.

33.Регистровая архитектура микропроцессоров.

34. Архитектура микропроцессоров с выделенным доступом к памяти.

35.Стековая архитектура микропроцессоров.

36.Классификация команд микропроцессоров.

37.Структура (форматы) команд микропроцессоров.

38. Регистровые структуры микропроцессоров

39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.

41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.

42.Поддержка операционной системы в микропроцессорах.

43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.

44.Мультипрограммный режим работы микропроцессоров.

46.Резидентная (внутренняя) память микроконтроллеров.

47.Периферийные устройства микроконтроллеров: параллельные порты ввода/вывода, таймеры и процессоры событий, интерфейсы последовательного ввода/вывода.

48.Основы организации интерфейсов микропроцессорных систем.

49.Классификация интерфейсов.

50.Организация параллельной передачи данных.

51.Организация последовательной передачи данных.

52.Основы проектирования микропроцессорных систем: цикл проектирования МПС, средства разработки и отладки МПС.

набора номера в телефонии и т.п.

Система синхронизации 8-разрядных МК функционально разделяется на собственно генератор синхронизации, который выделяется в отдельный модуль, и схему формирования многофазной последовательности импульсов для тактирования центрального процессора и межмодульных магистралей, которая является неотъемлемой частью процессорного ядра. Имеется возможность выбора внешнего времязадающего элемента: кварцевый или керамический резонатор, RC-цепь. Повышение производительности процессорного ядра МК связано с повышением частоты тактирования центрального процессора и межмодульных магистралей. Однако применение высокочастотных кварцевых резонаторов в качестве времязадающего элемента повышает уровень электромагнитного излучения, т.е. возрастает интенсивность генерации помех. Поэтому часто генераторы синхронизации имеют в своем составе умножитель частоты с программно настраиваемым коэффициентом умножения.

Умножитель частоты выполняется по схеме синтезатора с контуром фазовой автоподстройки (PLL Phase Loop Lock). Цепи синтезатора частоты и регистры специальных функций для управления режимами его работы включаются в один из модулей генератора синхронизации.

Модули
контроля за напряжением питания и ходом выполнения программы осуществляют диагностику некоторых подсистем МК и позволяют восстановить работоспособность устройства на основе МК при нарушениях программного характера, сбоях в

системе синхронизации, снижении напряжения питания.

Модули внутрисхемной отладки и программирования являются аппаратной основой режимов отладки и программирования, которые позволяют отлаживать прикладную программу и заносить коды программы в энергонезависимую память МК прямо на плате конечного изделия, без использования дополнительных аппаратных средств отладки и программирования.

Типы процессорных ядер

Процессорное ядро представляет собой неразрывное единство трех составляющих его технических решений:

  1. архитектуры центрального процессора с присущими ей набором регистров для хранения промежуточных данных, организацией памяти и способами адресации операндов в пространстве памяти, системой команд, определяющей набор возможных действий над операндами, организацией процесса выборки и исполнения команд;

  2. схемотехники воплощения архитектуры, которая определяет последовательность перемещения данных по внутренним магистралям МК между регистрами, арифметическо-логическим устройством и ячейками памяти в процессе выполнения каждой команды;

  3. технологии производства полупроводниковой ИС МК, которая позволяет разместить схему той или иной сложности на полупроводниковом кристалле, определяет допустимую частоту переключений в схеме и энергию потребления.


Эти три составляющие неразрывно связаны друг с другом и, в конечном счете, определяют важнейший параметр процессорного ядра МК его производительность


46.Резидентная (внутренняя) память микроконтроллеров.


Типы резидентной памяти

Закрытая архитектура современных 8-разрядных МК стала реализуемой лишь при условии интеграции на кристалл МК модулей памяти двух типов: энергонезависимого запоминающего устройства для хранения кодов прикладных программ (ПЗУ) и оперативного запоминающего устройства для хранения промежуточных результатов вычислений (ОЗУ).

С точки зрения пользователей МК следует различать пять типов энергонезависимой резидентной памяти.

  1. ПЗУмасочноготипа Mask-ROM. Содержимое ячеек ПЗУ этого типа записывается на заводе-изготовителе МК с помощью масок и не может быть заменено или изменено. Поэтому МК с таким типом памяти программ следует использовать в изделии только после достаточно длительной опытной эксплуатации этого изделия. ПЗУ масочного типа представляет собой самое дешевое и эффективное решение при больших объемах выпускаемой аппаратуры. Использование МК с масочным ПЗУ экономически становится рентабельным при партии в несколько десятков тысяч штук. Они обеспечивают высокую надежность хранения информации по причине программирования в заводских условиях с последующим контролем качества. Недостатки ПЗУ масочного типа: любое изменение прикладной программы потребует новой серии ИС МК, что может оказаться весьма дорогостоящим и времяемким решением.

  2. ПЗУ,однократнопрограммируемыепользователем OTPROM (One-Time Programmable ROM). В незапрограммированном состоянии каждая ячейка памяти модуля однократно программируемого ПЗУ содержит код FF. Программированию подлежат только те разряды, которые после программирования должны содержать 0. Если в процессе программирования некоторые разряды какой-либо ячейки памяти были установлены в 0, то восстановить в этих разрядах единичное значение уже невозможно. Поэтому рассматриваемый тип памяти и носит название однократно программируемые ПЗУ. Однако те разряды, которые в процессе предшествующего сеанса программирования не изменялись, т.е. имеют единичные значения, могут быть подвергнуты программированию в последующем и установлены в 0. Число возможных сеансов программирования модуля однократно программируемого ПЗУ в составе МК не имеет ограничений. Технология программирования состоит в многократном приложении импульсов повышенного напряжения к элементарным ячейкам адресуемого байта памяти (т.е. к битам), подлежащим программированию. Уровень напряжения программирования, число импульсов и их временные параметры должны в точности соответствовать техническим условиям. В противном случае ячейки памяти могут восстановить единичное значение по прошествии некоторого времени (иногда нескольких лет) или при изменении условий работы. МК с однократно программируемым ПЗУ рекомендуется использовать в изделиях, выпускаемых небольшими партиями.

  3. ПЗУ,программируемыепользователемсультрафиолетовымстиранием EPROM (Erasable Programmable ROM). ПЗУ данного типа допускают многократное программирование. Перед каждым сеансом программирования для восстановления единичного значения ранее запрограммированных ячеек памяти весь модуль ПЗУ должен быть подвергнут операции стирания при помощи ультрафиолетового облучения. Для этого корпус МК выполнен со специальным стеклянным окном, внутри которого расположена пластина ИС МК. Но если некоторые разряды ячеек памяти должны быть изменены с 1 на 0 при неизменном состоянии ранее запрограммированных разрядов, то операция стирания может быть пропущена. Число сеансов стирания/программирования ПЗУ данного типа ограничено и составляет 25-100 раз при условии соблюдения технологии программирования (напряжение, число и длительность импульсов программирования) и технологии стирания (волновой диапазон источника ультрафиолетового излучения). МК с ПЗУ данного типа имеют высокую стоимость, поэтому их рекомендуется использовать только в опытных образцах изделий.

  4. ПЗУ,программируемыепользователемсэлектрическимстиранием EEPROM (Electrically Erasable Programmable ROM). Электрически программируемые и электрически стираемые ПЗУ совмещают в себе положительные качества рассмотренных выше типов памяти. Во-первых, ПЗУ типа EEPROM программируются пользователем, во-вторых, эти ПЗУ могут быть многократно подвергнуты операции стирания, и, следовательно, многократно программируются пользователем, в-третьих, эти ПЗУ дешевле ПЗУ с ультрафиолетовым стиранием. Максимальное число циклов сти-рания/программирования ПЗУ типа EEPROM в составе МК обычно равно 10000. Технология программирования памяти типа EEPROM позволяет реализовать побайтное стирание и побайтное программирование, для чего к выбранной ячейке памяти должно быть приложено относительно высокое напряжение 10-20 В. Однако допускается также одновременное стирание некоторого количества ячеек памяти с последовательными адресами, т.е. стирание блока памяти. ПЗУ типа EEPROM редко используют для хранения программ. Во- первых, ПЗУ типа EEPROM имеют ограниченную небольшую емкость. Во-вторых, почти одновременно с EEPROM ПЗУ появились ПЗУ типа FLASH, которые обеспечивают близкие пользовательские характеристики, но при этом имеют более низкую стоимость.

  5. ПЗУсэлектрическимстираниемтипаFLASH FLASH ROM. В отличие от EEPROM ПЗУ типа FLASH стираются и программируются страницами или блоками. Страница, как правило, составляет 8, 16 или 32 байта памяти, блоки могут объединять некоторое число страниц, вплоть до полного объема резидентного ПЗУ МК.


Кроме ПЗУ в состав МК входит также и статическоеОЗУ. Современные 8-разрядные МК допускают снижение частоты тактирования до сколь угодно малых значений с целью снижения энергии потребления. Содержимое ячеек статического ОЗУ при этом сохраняется в отличие от динамической памяти. В качестве еще одной особенности следует отметить, что многие МК в техническом описании имеют параметр напряжениехраненияинформации. При снижении напряжения питания ниже минимально допустимого уровня, но выше напряжения хранения, программа управления микроконтроллером выполняться не будет, но информация в ОЗУ сохранится. Тогда при восстановлении напряжения питания можно будет выполнить сброс МК и про¬должить выполнение программы без потери данных. Уровень напряжения хранения составляет порядка 1 В. Это позволяет в случае необходимости перевести МК на питание от автономного источника (батарейки или аккумулятора) и сохранить тем самым данные ОЗУ. Большого расхода энергии потребления в этом случае не будет, так как система тактирования МК может быть отключена. Существуют МК, которые в корпусе имеют автономный источник питания, гарантирующий сохранение данных