Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 986

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

3. Понятие организации и архитектуры.

4. Фон-неймановская (принстонская) и гарвардская архитектуры. Организация пространств памяти и ввода/вывода.

5.Организация микропроцессорной системы (МПС): магистрально-модульный принцип организации МПС, основные классы микропроцессорных средств. Микропроцессорная система (МПС)

6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.

7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.

8. Характеристики микропроцессоров.

9. Организация магистрали микропроцессорной системы. Трехшинная магистраль с раздельными шинами передачи адреса и данных.

10. Циклы обращения к магистрали.

11. Организация обращения к магистрали с синхронным доступом.

12. Организация обращения к магистрали с асинхронным доступом.

14. Механизм пакетной передачи данных по системной магистрали.

15. Архитектура подсистемы памяти микропроцессорной системы. Характеристики подсистемы памяти микропроцессорной системы

16. Адресная память (запоминающие устройства с произвольным доступом).

17. Ассоциативная память.

18. Стековая память.

19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.

20. Кэш-память. Принципы кэширования памяти.

22.Алгоритмы замещения информации в заполненной кэш-памяти.

23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.

24.Концепция виртуальной памяти.

25.Страничная организация виртуальной памяти.

27.Архитектура подсистемы ввода/вывода микропроцессорной системы.

29.Радиальная система прерываний.

30. Векторная система прерываний.

31.Организация прямого доступа к памяти в микропроцессорной системе.

32.Аккумуляторная архитектура микропроцессоров.

33.Регистровая архитектура микропроцессоров.

34. Архитектура микропроцессоров с выделенным доступом к памяти.

35.Стековая архитектура микропроцессоров.

36.Классификация команд микропроцессоров.

37.Структура (форматы) команд микропроцессоров.

38. Регистровые структуры микропроцессоров

39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.

41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.

42.Поддержка операционной системы в микропроцессорах.

43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.

44.Мультипрограммный режим работы микропроцессоров.

46.Резидентная (внутренняя) память микроконтроллеров.

47.Периферийные устройства микроконтроллеров: параллельные порты ввода/вывода, таймеры и процессоры событий, интерфейсы последовательного ввода/вывода.

48.Основы организации интерфейсов микропроцессорных систем.

49.Классификация интерфейсов.

50.Организация параллельной передачи данных.

51.Организация последовательной передачи данных.

52.Основы проектирования микропроцессорных систем: цикл проектирования МПС, средства разработки и отладки МПС.

их относительной эффективности.

  1. Алгоритмзамещениянаосновенаиболеедавнегоиспользования(LRU Least Recently Used). Является наиболее эффективным алгоритм замещения. В соответствии с этим алгоритмом замещается та строка кэш-памяти, к которой дольше всего не было обращения. Проводившиеся исследования показали, что алгоритм LRU работает достаточно хорошо в сравнении с оптимальным алгоритмом.

Наиболее известны два способа аппаратной реализации этого алгоритма.

В первомиз них с каждой строкой кэш-памяти связывается счетчик. К содержимому всех счетчиков через определенные интервалы времени добавляется единица. При обращении к строке ее счетчик обнуляется. Таким образом, наибольшее число будет в счетчике той строки, к которой дольше всего не было обращений, и эта строка первый кандидат на замещение.

Второйспособ реализуется с помощью очереди, куда в порядке заполнения строк кэш-памяти заносятся ссылки на эти строки. При каждом обращении к строке ссылка на нее перемещается в конец очереди. В итоге первой в очереди каждый раз оказывается ссылка на строку,
к которой дольше всего не было обращений. Именно эта строка, прежде всего и заменяется.

  1. Алгоритм,работающийпо принципуFIFO(первый вошел, первый вышел First In First Out). В соответствии с этим алгоритмом заменяется строка, дольше всего находившаяся в кэш-памяти. Алгоритм легко реализуется с помощью рассмотренной очереди, с той лишь разницей, что после обращения к строке положение соответствующей ссылки в очереди не меняется.

  2. Алгоритмзаменынаименеечастоиспользовавшейсястроки(LFU Least Frequently Used). В соответствии с этим алгоритмом заменяется та строка в кэш-памяти, к которой было меньше всего обращений. Аппаратная реализация алгоритма: каждая строка связывается со счетчиком обращений, к содержимому которого после каждого обращения добавляется единица. Главным претендентом на замещение является строка, счетчик которой содержит наименьшее число.

  3. Произвольныйвыборстрокидлязамены. Простейший алгоритм, в соответствие с которым замещаемая строка выбирается случайным образом. Реализовано это может быть, например, с помощью счетчика, содержимое которого увеличивается на единицу с каждым тактовым импульсом, вне зависимости от того, имело место попадание или промах. Значение в счетчике определяет заменяемую строку. Данный алгоритм используется крайне редко.


23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.


В процессе вычислений процессор может не только считывать имеющуюся информацию, но и записывать новую, обновляя тем самым содержимое кэш-памяти. С другой стороны, многие устройства ввода/вывода могут напрямую обмениваться информацией с основной памятью (прямой доступ к памяти). В обоих вариантах возникает ситуация, когда содержимое строки кэша и соответствующего блока ОП перестают совпадать. В результате на связанное с основной памятью устройство вывода может быть выдана устаревшая информация, поскольку все изменения в ней, сделанные процессором, фиксируются только в кэш-памяти, а процессор будет использовать старое содержимое кэш-памяти вместо новых данных, загруженных в ОП из устройства ввода.

Для разрешения первой из рассмотренных ситуаций, когда процессор выполняет операцию записи, в системах с кэш-памятью предусмотрены методы обновления основной памяти (политики записи), которые можно разбить на две большие группы:

  • метод сквозной записи WT (write through);

  • метод обратной записи WB (write back).

По методу сквозной записи, прежде всего, обновляется слово, хранящееся
в основной памяти. Если в кэш-памяти существует копия этого слова, то она также обновляется. Если же в кэш-памяти отсутствует нужная копия, то возможны два варианта:

  1. сквознаязаписьсотображением из основной памяти в кэш-память пересылается блок, содержащий обновленное слово;

  2. сквознаязаписьбезотображения пересылка блока в кэш-память не производится.

Метод достаточно прост в реализации и легко обеспечивает целостность данных за счет постоянного совпадения копий данных в кэше и основной памяти. Основное достоинство метода сквозной записи состоит в том, что когда строка в кэш-памяти назначается для хранения другого блока, то удаляемый блок можно не возвращать в основную память, поскольку его копия там уже имеется. При этом можно обойтись без признака модифицированности. Недостаток метода состоит в том, что эффект от использования кэш-памяти (сокращение времени доступа) в отношении к операциям записи отсутствует. Данный метод применен в микропроцессорах i486 фирмы Intel.

Определенный выигрыш дает его модификация, известная как метод отложеннойбуферизированнойсквознойзаписи. Информация