Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.01.2024
Просмотров: 946
Скачиваний: 1
СОДЕРЖАНИЕ
3. Понятие организации и архитектуры.
6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.
8. Характеристики микропроцессоров.
10. Циклы обращения к магистрали.
11. Организация обращения к магистрали с синхронным доступом.
12. Организация обращения к магистрали с асинхронным доступом.
14. Механизм пакетной передачи данных по системной магистрали.
16. Адресная память (запоминающие устройства с произвольным доступом).
19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.
20. Кэш-память. Принципы кэширования памяти.
22.Алгоритмы замещения информации в заполненной кэш-памяти.
23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.
24.Концепция виртуальной памяти.
25.Страничная организация виртуальной памяти.
27.Архитектура подсистемы ввода/вывода микропроцессорной системы.
29.Радиальная система прерываний.
30. Векторная система прерываний.
31.Организация прямого доступа к памяти в микропроцессорной системе.
32.Аккумуляторная архитектура микропроцессоров.
33.Регистровая архитектура микропроцессоров.
34. Архитектура микропроцессоров с выделенным доступом к памяти.
35.Стековая архитектура микропроцессоров.
36.Классификация команд микропроцессоров.
37.Структура (форматы) команд микропроцессоров.
38. Регистровые структуры микропроцессоров
39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.
41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.
42.Поддержка операционной системы в микропроцессорах.
43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.
44.Мультипрограммный режим работы микропроцессоров.
46.Резидентная (внутренняя) память микроконтроллеров.
48.Основы организации интерфейсов микропроцессорных систем.
50.Организация параллельной передачи данных.
44.Мультипрограммный режим работы микропроцессоров.
Под задачейпонимается процесс обработки информации. В МП процесс обработки информации реализуется путем выполнения последовательности команд программы, т.е задаче соответствует выполняемая процессором программа, которая называется процессом. Многозадачностьюназывается такой способ организации работы системы, при котором в ее памяти одновременно содержатся программы и данные для выполнения нескольких задач. Параллельное (одновременное) выполнение нескольких процессов (задач) называется мультипрограммнымрежимом. Другими словами, мультипрограммный режим – это такой режим работы МП, в котором реализуется мультизадачность.
Мультизадачность имеет несколько достоинств:
лучшее использование МП. Мультизадачность повышает производительность системы, если каждая отдельная задача не захватывает МП полностью. Процессор может выбрать из ожидающих задач новую задачу, если выполнение текущей задачи заблокировано;
обеспечение надежности. В системе могут быть автономные, не связанные друг с другом функции. Оформление этих функции в виде задач позволяет исключить нежелательные воздействия между ними за счет ограничения действия
ошибок управляемой областью, которой является задача;
упрощение отладки, разработки и сопровождение программ. Обеспечивается наличие четких границ (интерфейсов) между задачами в системе.
Однозадачная архитектура поддерживает только один процесс, т.е. однопрограммный режим, так как процессор в каждый момент времени может выполнять команды только одной программы. При этом команды любой другой программы не выполняются.
Мультизадачная архитектура фактически поддерживает несколько процессов, т.е. мультипрограммный режим. В этом режиме команды всех задач выполняются с использованием процессора в режиме разделения времени. При этом выполнение задачи может быть приостановлено на любой команде, поэтому необходимо обеспечить ее перезапуск. Каждой задаче отводится отдельная область памяти (рис. 69), в том числе и стек для хранения всех данных, используемых в задаче. Кроме того, в памяти предусмотрены ячейки для хранения содержимого программного счетчика, регистра состояния и регистров общего назначения процессора.
Р исунок 69 – Распределение памяти между задачами
Когда выполнение задачи приостанавливается,
в эти ячейки помещаются значения содержимого этих регистров, в регистры загружаются значения, соответствующие новой задаче, после чего начинается выполнение задачи. При возобновлении выполнения задачи содержимое этих ячеек пересылается в программный счетчик, регистр состояния и РОН процессора, после чего выполнение задачи продолжается. Совокупность этих ячеек называется блокомуправлениязадачей. Обычно помимо содержимого указанных регистров в них может храниться и другая информация.
Таким образом, мультипрограммный режим реализуется путем переключенияпроцессорасоднойзадачипадругую. Однако в любой момент времени процессор выполняет только одну задачу – она является активной, а все остальные задачи в системе пассивны.
Возможные состояния задачи можно разделить в на два типа: пассивное и активное. Активное состояние подразделяется на состояния выполнения, готовности и ожидания. Эти состояния характеризуются следующими свойствами:
-
пассивноесостояние. Запуск еще не производился или работа уже завершена; -
состояние выполнения(прогона). Выполняются команды программы; -
состояние готовности. Возможно выполнение любой команды (в ходе выполнения процессором команд другой задачи); -
состояние ожидания. Ожидается генерация некоторых условий, например возникновение прерывания. До генерации этого условия следующую команду выполнять нельзя.
В ОС должны быть предусмотрены программа управления задачей, которая управляет переходом задачи из одного состояния в другое. Переход осуществляется по диаграмме, показанной на рис. 70
Рисунок 70 – Диаграмма изменения состояний задачи
При запуске задачи с помощью системного вызова (СТАРТ) устанавливается состояние готовности. В большинстве задач в этом состоянии ожидается начало выполнения команд. Если в задаче, находящейся в состоянии выполнения, происходит обращение к команде, выполнение которой возможно после генерации некоторых условий, выполнение приостанавливается, и задача с помощью системного вызова (ОЖИДАНИЕ) переходит в состояние ожидания. Из состояния ожидания задача переходит в состояние готовности, если генерируется ожидаемое задачей условие. Когда выполнение команд полностью закончено, задача с помощью системного вызова (ОКОНЧАНИЕ) переходит в пассивное состояние. В обоих случаях, когда задача переходит из состояния выполнения в состояние ожидания или пассивное состяние, выбирается одна из задач, находящихся в состоянии готовности, и переводится в состояние выполнения.
Выбор задачи зависит от стратегии планирования выполнения задач, реализуемой программой управления задачей. Существуют различные
стратегии планирования выполнения задач. Широко используется метод, по которому первой выбирается задача, находившаяся в состоянии выполнения непосредственно перед последней выполненной задачей. Замена задачи в состоянии выполнения называется переключениемзадач.
Имеются аппаратные и программные причины переключения задач. Необходимость переключения может возникнуть в результате внешнего сигнала прерывания или по требованию операционной системы, управляющей разделением времени МП. Задача, которая начинает выполняться в результате прерывания, называется планируемойаппаратно(или по прерыванию).
Задача, которая начинает выполняться по требованию операционной системы, называется планируемойпрограммно. В мультизадачной системе обычно имеется оба типа планирования задач. Например, пользовательские задачи, разделяющие МП, планируются программно операционной системой. Некоторые системные задачи, например ввод с клавиатуры или другой ввод/вывод, обычно планируется прерыванием, чтобы обслужить периферийные устройства в реальном времени (в пределах гарантированного времени реакции).
При переключении задач в блок управления выполняемой задачей необходимо переслать содержимое программного счетчика, регистра состояния и РОН, а из блока управления новой задачей считать содержимое этих регистров. Для реализации