Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 993

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

3. Понятие организации и архитектуры.

4. Фон-неймановская (принстонская) и гарвардская архитектуры. Организация пространств памяти и ввода/вывода.

5.Организация микропроцессорной системы (МПС): магистрально-модульный принцип организации МПС, основные классы микропроцессорных средств. Микропроцессорная система (МПС)

6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.

7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.

8. Характеристики микропроцессоров.

9. Организация магистрали микропроцессорной системы. Трехшинная магистраль с раздельными шинами передачи адреса и данных.

10. Циклы обращения к магистрали.

11. Организация обращения к магистрали с синхронным доступом.

12. Организация обращения к магистрали с асинхронным доступом.

14. Механизм пакетной передачи данных по системной магистрали.

15. Архитектура подсистемы памяти микропроцессорной системы. Характеристики подсистемы памяти микропроцессорной системы

16. Адресная память (запоминающие устройства с произвольным доступом).

17. Ассоциативная память.

18. Стековая память.

19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.

20. Кэш-память. Принципы кэширования памяти.

22.Алгоритмы замещения информации в заполненной кэш-памяти.

23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.

24.Концепция виртуальной памяти.

25.Страничная организация виртуальной памяти.

27.Архитектура подсистемы ввода/вывода микропроцессорной системы.

29.Радиальная система прерываний.

30. Векторная система прерываний.

31.Организация прямого доступа к памяти в микропроцессорной системе.

32.Аккумуляторная архитектура микропроцессоров.

33.Регистровая архитектура микропроцессоров.

34. Архитектура микропроцессоров с выделенным доступом к памяти.

35.Стековая архитектура микропроцессоров.

36.Классификация команд микропроцессоров.

37.Структура (форматы) команд микропроцессоров.

38. Регистровые структуры микропроцессоров

39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.

41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.

42.Поддержка операционной системы в микропроцессорах.

43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.

44.Мультипрограммный режим работы микропроцессоров.

46.Резидентная (внутренняя) память микроконтроллеров.

47.Периферийные устройства микроконтроллеров: параллельные порты ввода/вывода, таймеры и процессоры событий, интерфейсы последовательного ввода/вывода.

48.Основы организации интерфейсов микропроцессорных систем.

49.Классификация интерфейсов.

50.Организация параллельной передачи данных.

51.Организация последовательной передачи данных.

52.Основы проектирования микропроцессорных систем: цикл проектирования МПС, средства разработки и отладки МПС.

регистр данных контроллера. При этом каждое слово сопровождается управляющим сигналом вводданныхиз ПУ, который обеспечивает запись слова данных в регистр данных контроллера и формирование сигнала требованиепрямогодоступакпамятиHOLD. В ответ процессор формирует сигнал предоставлениепрямогодоступакпамятиHLDA, после чего следующий машинный цикл занимается под обмен. При этом осуществляется одна пересылка слова данных в ячейку памяти по адресу, находящемуся в регистре адреса контроллера. По сигналу HLDA контроллер выставляет на шины адреса и данных системной магистрали содержимое своих регистров адреса и данных соответственно.

Формируя управляющий сигнал MEMRW, контроллер ПДП обеспечивает запись слова данных из своего регистра данных в память.

После передачи каждого слова данных из содержимого счетчика слов контроллера вычитается 1, и когда оно становится равным 0, устанавливается запрос на прерывание, который поступает на соответствующий вход процессора. Процессор прерывает выполнение программы и передает управление подпрограмме обработки прерывания для завершения обмена.

Завершение обмена осуществляется
путем отключения ПУ от контроллера ПДП командой вывода. По окончании обработки прерывания управление возвращается основной программе.

Если нет необходимости продолжать выполнение некоторой программы параллельно с передачей в режиме ПДП, то прерывание не используется. В течение обмена через канал ПДП процессор находится в цикле ожидания окончания передачи, опрашивая соответствующий разряд готовности регистра состояния контроллера ПДП по команде ввода. Как только процессор обнаружит готовность, он переходит к процедуре завершения обмена (шаг 4 рассмотренной выше последовательности), после чего выполнение программы продолжается.

Выше были рассмотрены только процесс подготовки контроллера ПДП и непосредственно передача данных в режиме ПДП. На практике любой сеанс обмена данными с ПУ в режиме ПДП всегда включает также и этап подготовки ПУ к обмену. На этом этапе процессор в режиме программно-управляемого обмена опрашивает состояние ПУ, проверяя его готовность к обмену, и посылает в ПУ команды, обеспечивающие его подготовку к обмену данными по каналу ПДП. Такая подготовка может сводиться, например, к перемещению головок на

требуемую дорожку в НМД. Затем выполняется загрузка регистров контроллера ПДП, после чего начинается обмен данными в режиме ПДП.

Следует отметить, что использование в микропроцессорной системе обмена в режиме ПДП с захватом цикла требует от программиста очень ясного понимания процессов, происходящих в системе при выполнении программы, и четкой синхронизации процесса выполнения программы и ввода/вывода по каналу ПДП.

Режим ПДП с блокировкой процессора

Прямой доступ к памяти с блокировкой процессора отличается от режима ПДП с захватом цикла тем, что управление системной магистралью передается контроллеру ПДП не на время передачи одного слова, а на время обмена блоком данных. Такой режим ПДП необходим в тех случаях, когда время между двумя сигналами требованиепрямогодоступакпамятиHOLD сопоставимо с циклом процессора. В этом случае процессор не успевает выполнить хотя бы одну команду между очередными операциями обмена в режиме ПДП.

В микропроцессорной системе можно использовать несколько ПУ, работающих в режиме ПДП. Предоставление таким ПУ шин системной магистрали для обмена данными производится на приоритетной основе. В этом случае
приоритеты ПУ реализуются так же, как и при обмене данными в режиме прерывания. Как правило, для каждого ПУ используется своя пара управляющих сигналов требованиепрямогодоступакпамяти HOLD и предоставлениепрямогодоступакпамяти HLDA и отдельный канал в контроллере ПДП


32.Аккумуляторная архитектура микропроцессоров.


Архитектура на базе аккумулятора исторически возникла одной из первых. В ней для хранения одного из операндов арифметической или логической операции в процессоре имеется выделенный регистр аккумулятор. В этот же регистр заносится и результат операции. Изначально оба операнда хранятся в основной памяти, и до выполнения операции один из них нужно загрузить в аккумулятор. После выполнения команды обработки результат находится в аккумуляторе и, если он не является операндом для последующей команды, его требуется сохранить в ячейке памяти.

Типичная архитектура микропроцессора на базе аккумулятора показана на рис. 47.

Рисунок 47 – Архитектура микропроцессора на базе аккумулятора

Для загрузки в аккумулятор содержимого ячейки х предусмотрена команда загрузки loadx. По этой команде информация считывается из ячейки памяти х, выход памяти подключается ко входу аккумулятора и происходит занесение считанных данных в аккумулятор. Запись