Файл: Программа для эвм это упорядоченная последовательность команд, подлежащая обработке.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 1035

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

3. Понятие организации и архитектуры.

4. Фон-неймановская (принстонская) и гарвардская архитектуры. Организация пространств памяти и ввода/вывода.

5.Организация микропроцессорной системы (МПС): магистрально-модульный принцип организации МПС, основные классы микропроцессорных средств. Микропроцессорная система (МПС)

6. Типовые структуры МПС: магистральная, магистрально-каскадная, магистрально-радиальная.

7.Шинная организация микропроцессорных систем: с одной шиной, с двумя видами шин, с тремя видами шин.

8. Характеристики микропроцессоров.

9. Организация магистрали микропроцессорной системы. Трехшинная магистраль с раздельными шинами передачи адреса и данных.

10. Циклы обращения к магистрали.

11. Организация обращения к магистрали с синхронным доступом.

12. Организация обращения к магистрали с асинхронным доступом.

14. Механизм пакетной передачи данных по системной магистрали.

15. Архитектура подсистемы памяти микропроцессорной системы. Характеристики подсистемы памяти микропроцессорной системы

16. Адресная память (запоминающие устройства с произвольным доступом).

17. Ассоциативная память.

18. Стековая память.

19. Основная память: блочная, циклическая и блочно-циклическая схемы организации основной памяти.

20. Кэш-память. Принципы кэширования памяти.

22.Алгоритмы замещения информации в заполненной кэш-памяти.

23.Алгоритмы согласования содержимого кэш-памяти и основной памяти.

24.Концепция виртуальной памяти.

25.Страничная организация виртуальной памяти.

27.Архитектура подсистемы ввода/вывода микропроцессорной системы.

29.Радиальная система прерываний.

30. Векторная система прерываний.

31.Организация прямого доступа к памяти в микропроцессорной системе.

32.Аккумуляторная архитектура микропроцессоров.

33.Регистровая архитектура микропроцессоров.

34. Архитектура микропроцессоров с выделенным доступом к памяти.

35.Стековая архитектура микропроцессоров.

36.Классификация команд микропроцессоров.

37.Структура (форматы) команд микропроцессоров.

38. Регистровые структуры микропроцессоров

39. Адресация данных в микропроцессорах: представление адресной информации, способы адресации.

41.Защита памяти в микропроцессорах: механизмы защиты, концепция привилегий.

42.Поддержка операционной системы в микропроцессорах.

43.Специальные прерывания (особые случаи, исключения) в микропроцессорах.

44.Мультипрограммный режим работы микропроцессоров.

46.Резидентная (внутренняя) память микроконтроллеров.

47.Периферийные устройства микроконтроллеров: параллельные порты ввода/вывода, таймеры и процессоры событий, интерфейсы последовательного ввода/вывода.

48.Основы организации интерфейсов микропроцессорных систем.

49.Классификация интерфейсов.

50.Организация параллельной передачи данных.

51.Организация последовательной передачи данных.

52.Основы проектирования микропроцессорных систем: цикл проектирования МПС, средства разработки и отладки МПС.

этих действий программными средствами требуется много времени. Кроме того, для управления задачей требуются различные системные вызовы, на выполнение которых также уходит много времени. Таким образом, реализация мультипрограммного режима сопровождается затратами времени, дополнительными по отношению ко времени, требуемому для выполнения основной работы. В целях сокращения времени основные операции по переключению задач желательно выполнять автоматически аппаратными средствами

45.Структурная организация однокристальных микроконтроллеров (на примере 8- разрядных микроконтроллеров): модульный принцип построения, типы процессорных ядер.
Микроконтроллерыявляются специализированными микропроцессорами, которые ориентированы на реализацию устройств управления, встраиваемых в разнообразную аппаратуру.

Характерной особенностью структуры микроконтроллеров является размещение на одном кристалле с центральным процессором внутренней памяти и большого набора периферийных устройств. В состав периферийных устройств обычно входят несколько параллельных портов ввода/вывода данных (от 1 до 8), один или два последовательных порта, таймерный блок, аналого- цифровой преобразователь. Кроме того, различные типы микроконтроллеров содержат дополнительные специализированные устройства, такие как блок формирования сигналов
с широтно-импульсной модуляцией, контроллер жидкокристаллического дисплея и ряд других. Благодаря использованию внутренней памяти и периферийных устройств реализуемые на базе микроконтроллеров системы управления содержат минимальное количество дополнительных компонентов.

Для удовлетворения запросов потребителей выпускается большая номенклатура микроконтроллеров, которые принято подразделять на 8-, 16- и 32-разрядные.

8-разрядныемикроконтроллерыпредставляют наиболее многочисленную группу этого класса микропроцессоров, которые имеют относительно низкую производительность, которая, однако, вполне достаточна для решения широкого круга задач управления различными объектами. Это простые и дешевые микроконтроллеры, ориентированные на использование в относительно несложных устройствах массового выпуска. Основными об¬ластями их применения являются бытовая и измерительная техника, промышленная автоматика, автомобильная электроника, теле-, видео- и аудиоаппаратура, средства связи.

Структурную организацию однокристальных микроконтроллеров рассмотрим на примере 8-разрядных МК. Модульный принцип построения

Микроконтроллеры представляют собой законченную микропроцессорную систему обработки информации, которая реализована в виде одной интегральной микросхемы. МК

объединяет в пределах одного полупроводникового кристалла основные функциональные блоки микропроцессорной управляющей системы: центральный процессор, ПЗУ, ОЗУ, периферийные устройства для ввода и вывода информации.

Особенностью структурной организации однокристальных МК является модульныйпринциппостроения. Модульный принцип построения обеспечивает широкое разнообразие моделей МК, а также возможность разработки и производства новых моделей МК в короткие сроки. При модульном принципе построения все МК одного семейства содержат в себе базовый функциональный блок, который одинаков для всех МК семейства, и изменяемый функциональный блок, который отличает МК разных моделей в пределах одного семейства (рис. 71).

Рисунок 71 – Модульная структура микроконтроллера

Базовый функциональный блок включает:

  1. центральный процессор;

  2. внутренние магистрали адреса, данных и управления;

  3. схему формирования многофазной импульсной последовательности для тактирования центрального процессора и межмодульных магистралей;

  4. устройство управления режимами работы МК (такими как активный режим, в котором МК выполняет прикладную программу, режимы пониженного энергопотребления, в один из которых МК переходит, если по условиям работы выполнение программы может быть приостановлено, состояния начального запуска/сброса и прерывания).


Базовый функциональный блок принято называть процессорнымядромМК. Процессорное ядро обозначают именем семейства МК, основой которого оно является. Например, ядро НС11 процессорное ядро семейства Motorola МС68НС11, ядро MCS-51 ядро семейства МК Intel 8хС51, ядро PIC16 процессорное ядро Microchip PIC16.

Изменяемыйфункциональныйблоквключает модули памяти различных типов, модули периферийных устройств, модули генераторов синхронизации и некоторые дополнительные модули специальных режимов работы МК. Представленный на уровне схемы электрической принципиальной, каждый модуль имеет выводы для подключения его к магистралям процессорного ядра. Это позволяет на уровне функционального проектирования новой модели МК подсоединять те или иные модули к магистралям процессорного ядра, создавая, таким образом, разнообразные по структуре МК в пределах одного семейства. На уровне топологического проектирования ИС МК, объединенные в составе МК, модули размещают на одном полупроводниковом кристалле. Отсюда появилось выражение «интегрированные на кристалл» периферийные модули. Совокупность модулей, которые разработаны для определенного процессорного ядра, принято
называть библиотекойпериферийныхмодулей. Библиотека каждого современного семейства МК включает модули пяти функциональных групп:

  1. модули памяти;модули периферийных устройств;

  2. модули встроенных генераторов синхронизации;

  3. модули контроля за напряжением питания и ходом выполнения программы;

  4. модули внутрисхемной отладки и программирования.

Для 8-разрядных МК характерна, как правило, закрытаяархитектура, при которой линии внутренних магистралей адреса и данных отсутствуют на выводах корпуса МК. Как следствие, не предоставляется возможность использования внешних по отношению к МК ИС запоминающих устройств.

Группа модулей периферийных устройств включает следующие основные типы:

  • параллельные порты ввода/вывода;

  • таймеры/счетчики событий, таймеры периодических прерываний, процессоры событий;

  • контроллеры последовательного интерфейса связи нескольких типов (UART, SCI, SPI, I2C, USB);

  • аналого-цифровые преобразователи (АЦП);

  • цифроаналоговые преобразователи (ЦАП);

  • контроллеры ЖК и светодиодных индикаторов.

Возможны также некоторые другие типы модулей, например, модуль прямого доступа к памяти, модуль управления ключами силовых инверторов напряжения, модуль генератора DTMF для тонального