Файл: МПМ экзамен, Коробова О.В..docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.02.2019

Просмотров: 3091

Скачиваний: 51

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Из требований программы вытекают следующие задачи:

Довести до сознания детей смысл рассматриваемых действий, научить их правильно выбирать нужное арифметическое действие при решении различных простых задач.

На доступном для младших школьников уровне и в доступной для них форме познакомить их с теми свойствами рассматриваемых действий, которые являются теоретической основой изучаемых приемов устных и письменных вычислений. Научить применять изученные свойства в разнообразных условиях, используя соответствующие знания в целях рационализации вычислений, а также в целях отыскания наиболее рационального способа решения задач.

Обеспечить усвоение детьми связей, существующих между действиями. Научить применять соответствующие знания: а) в вычислениях (при нахождении частного с опорой на знание соответствующего случая умножения, при нахождении разности с опорой на знание соответствующего случая сложения); б) при проверке правильности выполненных вычислений; в) при решении задач на нахождение неизвестного компонента действий и г) при решении простейших уравнений.

Обеспечить сознательное и прочное усвоение детьми основных приемов устных и письменных вычислений, умение сознательно выбирать такие из известных приемов вычислений, которые более всего отвечают особенностям каждого конкретного примера.

Сформировать у детей сознательные и прочные навыки быстрых и правильных вычислений.

Для успешного решения каждой из этих конкретных задач курса необходимо не только определить содержание и систему соответствующих упражнений (это в основном сделано в учебниках), но целесообразно использовать различные методы обучения.

Осознание смысла действий, существующих между ними связей, зависимости между компонентами и результатами действий может быть обеспечено только в том случае, если рассмотрение этих теоретических вопросов будет вестись на прочной базе собственного опыта детей. При этом следует учитывать, что речь здесь должна идти не только о жизненном опыте, приобретаемом детьми в ходе разнообразных практических действий с предметами, но и об опыте, накапливаемом при изучении математики в школе.

Так, скажем, работа над нумерацией и арифметическими действиями строится в начальном курсе математики концентрически. В программе намечена система постепенного расширения области рассматриваемых с - детьми чисел (десяток - сотня - тысяча - многозначные числа), причем при изучении каждой из этих тем предусмотрено наряду с рассмотрением новой области чисел постепенное введение (или углубление, систематизация, обобщение) приобретенных детьми ранее знаний нумерации и действий с числами. Ознакомление детей с числами и арифметическими действиями подготавливается на первых уроках математики практическими упражнениями в объединении двух данных множеств предметов, в установлении соответствия между элементами двух множеств, в выделении части данного множества предметов.


От операций с множествами дети постепенно переходят к счету предметов, знакомятся с первыми десятью числами натурального ряда (их названиями, последовательностью), выясняют на примере этих чисел, как образуется каждое следующее число в натуральном ряду, учатся сравнивать числа, находить их сумму и разность. Сначала это делается на основе выполнения соответствующих операций над множествами предметов и счета элементов множества, полученного в результате объединения двух множеств или удаления части множества, а затем и с использованием некоторых приемов действий над числами (присчитывание и отсчитывание по единице и группами и др.).

При изучении сложения и вычитания в пределах 10, а затем и сотни дети знакомятся с вычислительными приемами, основанными на использовании свойств действий (переместительное свойство суммы, различные способы прибавления числа к сумме и суммы к числу, вычитания числа из суммы и суммы из числа), а также на основе понимания связи между сложением и вычитанием. При этом, как уже отмечалось, вся работа, связанная с рассмотрением этих свойств и разнообразных приемов вычислении, подчиняется задаче рационализации вычислений.

Важнейшей задачей первого года обучения в отношении формирования вычислительных навыков является такое усвоение детьми табличных случаев сложения и вычитания, которое обеспечивало бы возможность автоматизированных вычислений при сложении однозначных чисел и формирования навыков быстрых устных вычислений с двузначными числами.

В объяснительной записке к программе подчеркивается, что табличные случаи сложения и вычитания должны быть в результате упражнений усвоены детьми па память и поэтому большое значение имеет своевременное создание у детей установки на их запоминание. Необходимо также вести повседневную тренировочную работу, без которой желаемого результата достичь, нельзя.

При рассмотрении нумерации в пределах 100 специальное внимание уделяется ознакомлению детей с новой счетной единицей - десятком, изучению состава чисел из разрядных слагаемых (13 - это 10 и 3 или 1 десяток и 3 единицы), выяснению поместного значения цифр в записи двузначных чисел. Рассмотрение этих вопросов происходит на таком уровне, который предполагает уверенное использование детьми соответствующих знаний, но не требует усвоения каких-либо обобщенных формулировок.

Умножение и деление в пределах 100 рассматривается во II классе. При ознакомлении с этими новыми для детей арифметическими действиями учитель может опереться на подготовительную работу, предусмотренную программой для I класса (упражнения в нахождении суммы одинаковых слагаемых и в представлении числа в виде такой суммы).

Как и при изучении сложения и вычитания, рассмотрение приемов умножения и деления в пределах 100 ведется на основе предварительного ознакомления детей с некоторыми важнейшими свойствами этих действий и связи, существующей между умножением и делением. При этом возникают вопросы, аналогичные тем, которые были рассмотрены нами выше применительно к сложению и вычитанию.


Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач.

На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения.

Уже в теме "Десяток" после ознакомления с первыми десятью числами дети впервые встретятся с нулем. В дальнейшем, по ходу изучения сложения, вычитания, умножения и деления уделяется специальное внимание рассмотрению случаев действий с нулем. В связи с изучением умножения и деления выделяются случаи умножения и деления с нулем и единицей.

В органической связи с изучением чисел и арифметических действий ведется и работа по ознакомлению детей с величинами и их измерением. Знакомство с новыми единицами измерения и установление соотношений между ними, упражнения в преобразовании чисел, выраженных в различных единицах измерения, связывается, как правило, с работой над нумерацией. (Так, параллельно рассматриваются состав чисел второго десятка из разрядных слагаемых и получение в результате измерения отрезков чисел вида 1 дм 5 см, преобразование этих чисел: 1 дм 5 см = 15 см. Делается это по аналогии со случаями вида: 1 дес.5 ед. составляют 15 ед) Этот принцип реализуется и в дальнейшем - при каждом расширении области чисел и при рассмотрении новых случаев действий.

При переходе к изучению тем "Тысяча" и "Многозначные числа" основное значение приобретает работа над формированием навыков письменных вычислений. Однако при этом предполагается, что параллельно с рассмотрением приемов письменного выполнения арифметических действий все время будет совершенствоваться и умение выполнять устные вычисления с числами в пределах 100 (а также, в легких случаях, и с числами большими).

При раскрытии способов письменного выполнения сложения, вычитания, умножения и деления чисел, как и для приемов устных вычислений, предусмотрено осознание учащимися смысла выполняемых операций, их последовательности, доступное их обоснование. Вместе с тем при этом все время должна иметься в виду конечная цель, состоящая в выработке определенного автоматизма в письменных вычислениях (возврат к осмыслению производимых операций и в данном случае рекомендуется главным образом при возникновении тех или иных затруднений или ошибок в ходе вычислений).

Хотя программой предусмотрено ознакомление учащихся начальных классов с нумерацией и действиями над многозначными числами в пределах класса миллионов, в соответствии с ограничением, оговоренным в объяснительной записке, подавляющее большинство тренировочных упражнений должно включать лишь такие числа и действия, которые не выходят за пределы миллиона.


Параллельно с работой над письменными вычислениями обобщаются и углубляются знания детей о самих действиях, их свойствах (вводятся некоторые новые свойства), о существующей между действиями связи, об изменении результатов действий при изменении одного из компонентов, о взаимосвязи между компонентами и результатом. Обобщение и углубление соответствующих знаний происходят на прочной основе наблюдений, систематически проводимых в течение четырех лет начального обучения. Все эти знания, как подчеркивается в объяснительной записке к программе, используются для рационализации вычислений.

Параллельно и в неразрывной связи с изучением чисел и арифметических действий ведется работа, направленная на формирование понятий выражения, равенства и неравенства. Числовые выражения, равенства и неравенства впервые встречаются уже на первых уроках обучения математике и затем систематически, из урока в урок, работа над ними продолжается. Она предполагает постепенное усложнение материала не только за счет расширения области рассматриваемых чисел, но и за счет усложнения структуры рассматриваемых выражений и усложнения видов заданий, связанных с применением приобретенных детьми ранее знаний. Эта система проиллюстрирована в тексте программы отдельными, наиболее типичными примерами. Так, в теме "Десяток" предусмотрено сначала ознакомление детей со сравнением чисел и записями вида: 5 = 5, 6 < 7, 9 > 8; затем вводятся чтение, запись и сравнение выражений вида: 5 + 4 и 6 + 4, 7 + 2 и 7 - 2, 3 + 0 и 3 - 0. В теме "Сотня" приведены примеры, предназначенные для сравнения выражений вида: 10 - (5 + 3) и 10 - 5 - 3 (сравнение их может проводиться как на основе предварительного вычисления значения каждого из сравниваемых выражений и сравнения полученных чисел, так и на основе применения известных уже свойств действий). При изучении темы "Умножение и деление в пределах 100" для сравнения предлагаются выражения вида: х 9 и 9 х, связанные с использованием переместительного свойства произведения, и 7 8 и 7 9, где может найти применение знание связи умножения со сложением, и т.п.

Помимо задачи формирования понятий о выражении, равенстве, неравенстве, соответствующие упражнения служат, таким образом, задаче закрепления как вычислительных навыков, так и тех элементов арифметической теории, которые рассматривались при изучении действий.


21. Понятие об устных и письменных, табличных и внетабличных вычислительных приемах в начальном курсе математики. Вычислительный навык, критерии его сформированности.

Вычислительный прием - это способ нахождения результата арифметического действия.

Вычислительный навык - это вычислительный прием, доведенный до автоматизма или высокая степень овладения вычислительным приемом.

Приобрести вычислительный навык - это значит для каждого случая знать, какие операции и в каком порядке следует выполнять, чтобы найти результаты арифметических действий.


Все вычислительные приемы делятся на две группы: устные и письменные.

Устные и письменные приемы имеют сходство и различия. Покажем основные отличия в таблице.

Устные вычислительные приемы

Письменные вычислительные приемы

1. Выполняются устно, записываются в строчку: 34+20=(30+4)+20=(30+20)+4=54

1. Выполняются в столбик:

25

+18

43

2. Операции начинают выполня­ться с единиц высших разрядов

2. Операции начинают выполнять с единиц низших разрядов

3. Промежуточные результаты запоминаются, записываются только на стадии ознакомления

3. Промежуточные результаты записываются

4. Теоретическая основа может быть различна: 12+12+12+12+12=60.

Т.о. - конкретный смысл арифметического действия умножения.

125=(10+2)5=105+25=60.

Т.о. - свойство умножения суммы на число.

125=1210:2=60.

Т.о. - изменение результата в зависимости от изменения одного из компонентов.

Теоретическая основа всегда единственна.

Приемы основаны на принципе по разрядности

5. Рассматриваются на области чисел, начиная с 10 и до многозначных чисел, где вычисления не затруднены

Рассматриваются на области чисел, начиная с сотни и до бесконечности.

Устные и письменные вычислительные приемы имеют сходство. Все вычислительные приемы основаны на знании теоретического материала. В зависимости от теоретического материала они делятся на шесть групп.

Iгруппа. Вычислительные приемы, основанные на знании нумерации:

1. Знание принципа образования натуральной последовательности. Слу­чаи вида: а+1.

Дети должны усвоить, что для того чтобы прибавить 1, надо назвать следующее число; вычесть 1 - назвать предыдущее число: 7+1; 26-1; 393+1; 10000-1.

2. Знание разрядного состава чисел. Случаи вида:

40+5 100+40+7

45-5 147-100

45-40 147-40

147-7

40+5=45 - рассуждения учащихся могут быть такие: 4 десятка и 5 единиц образуют число 45.

45-5=40 - если из 4 десятков и 5 единиц вычесть 5 единиц, то получим 4 десятка.

45-40=5 - если из 4 десятков и 5 единиц вычесть 4 десятка то получим 5 единиц.

3. Прием, основанный на знании поместного значения цифры (позиционного принципа записи чисел). В зависимости от того, на каком месте (позиции) стоит цифра в записи числа , она имеет разное значение. В эту группу входят случаи умножения и деления на 10, 100, 1000 без остатка.

Умножить на 10, значит приписать один нуль (7 умножить на 10, 7 записываем на второе место справа, на место десятков). Разделить на 10, значит отбросить один нуль.

Примеры:

710 70:10

7100 700:100

71000 7000:1000.

IIгруппа. Вычислительные приемы, теоретической основой которых является знание конкретного смысла арифметических действий.

1. Случаи вида: а+2, 3, 4, 0, (5+5), (в пределах 20). Применяется прием присчитывания и отсчитывания по одному и группами:

3+2=5 (объединяем 3 да 2) 5-2=3

3+1=4 5-1=4

4+1=5 4-1=3

2 . Случаи вида: 9+5=14 12-5=7.

9 +1+4 12-2-3

3. Случаи сложения и вычитания разрядных чисел: