Файл: Руководство по выполнению базовых экспериментов эцпет. 001 Рбэ (902) 2006.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 12.01.2024
Просмотров: 620
Скачиваний: 1
СОДЕРЖАНИЕ
2. Параметры синусоидального напряжения (тока)
3. Активная мощность цепи синусоидального тока
4. Цепи синусоидального тока с конденсаторами
4.1. Напряжение и ток конденсатора
4.2. Реактивное сопротивление конденсатора
4.3. Последовательное соединение конденсаторов
4.4. Параллельное соединение конденсаторов
4.5. Реактивная мощность конденсатора
5. Цепи синусоидального с катушками индуктивности
5.1. Напряжение и ток катушки индуктивности
5.2. Реактивное сопротивление катушки индуктивности
5.3. Последовательное соединение катушек индуктивности
5.4. Параллельное соединение катушек индуктивности
5.5. Реактивная мощность катушки индуктивности
6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности
6.2. Параллельное соединение резистора и конденсатора
6.3. Последовательное соединение резистора и катушки индуктивности
6.4. Параллельное соединение резистора и катушки индуктивности
6.6. Параллельное соединение конденсатора и катушки индуктивности.Понятие о резонансе токов
6.7. Частотные характеристикипоследовательного резонансного контура
6.8. Частотные характеристики параллельного резонансного контура
6.9. Мощности в цепи синусоидального тока
7.2. Коэффициент трансформации
7.4. Определение параметров схемы замещения и построение векторной диаграммы трансформатора
7.5. Внешняя характеристика и коэффициент полезного действия (КПД) трансформатора
8. Трехфазные цепи синусоидального тока
8.1. Напряжения в трехфазной цепи
8.2. Трехфазная нагрузка, соединенная по схеме «звезда»
8.3. Трехфазные нагрузки, соединенные по схеме «треугольник»
8.4. Аварийные режимы трёхфазной цепи при соединении нагрузки в звезду
8.5 Аварийные режимы трёхфазной цепи при соединении нагрузки в треугольник
9. Расчёт и экспериментальное исследование цепи при несинусоидальном приложенном напряжении
10. Переходные процессы в линейных электрических цепях
10.1. Переходный процесс в цепи с конденсатором и резисторами
10.2. Процессы включения и отключения цепи с катушкой индуктивности
5.5. Реактивная мощность катушки индуктивности
5.5.1. Общие сведения
Когда катушка индуктивности подключена к переменному синусоидальному напряжению, в ней возникает синусоидальный ток, отстающий по фазе от напряжения на 90о (рис. 5.5.1).
Изменение во времени мгновенной мощности, потребляемой в катушке, может быть представлено на графике (рис. 5.5.1) путем перемножения мгновенных значений тока i и напряжения u. Положительная полуволна кривой мощности равнозначна подведению энергии к катушке. Во время отрицательной полуволны катушка отдает запасенную ранее энергию магнитного поля. В идеальной катушке потерь активной мощности нет. В действительности же возвращаемая энергия всегда меньше потребляемой из-за потерь энергии в активном сопротивлении катушки.
Рис. 5.5.1
В идеальной катушке (при R=0) график мощности p(t) представляет собой синусоиду двойной частоты (см. рис. 5.5.1) с амплитудой
QL = ULm ILm/2 = UL IL.
Это значение является максимальной мощностью, потребляемой или отдаваемой идеальной катушкой индуктивности. Она называется индуктивной реактивной мощностью.
Средняя (активная) мощность, потребляемая такой катушкой, равна нулю.
5.5.2. Экспериментальная часть
Задание
Выведите кривые тока и напряжения катушки на экран виртуального осциллографа, перенесите их на график и постройте кривую изменения мгновенных значений мощности перемножением мгновенных значений напряжения и тока.
Порядок выполнения эксперимента
-
Соберите цепь согласно схеме (рис. 5.5.2), подсоедините к ней регулируемый источник синусоидального напряжения с параметрами: U=5…7B и f = 200 Гц. В качестве индуктивности с малым активным сопротивлением используйте катушку трансформатора 300 витков, вставив между подковами разъемного сердечника полоски бумаги в один слой (немагнитный зазор).
Рис. 5.5.2
-
Включите виртуальные приборы V0, A1 и осциллограф. -
«Подключите» два входа осциллографа к приборам V0 и A1, а остальные отключите. -
Установите параметры развёртки осциллографа так, чтобы на экране было изображение примерно одного-двух периодов напряжения и тока. -
Включите блок дополнительных приборов, выберите из меню приборы «Активная мощность» и «Реактивная мощность» и подключите их к V1 и A1. Запишите значения реактивной мощности QL и активной P. Убедитесь, что P <<QL. -
Занесите данные осциллографирования напряжения и тока в катушке в табл. 5.5.1 соответственно указанным в ней моментам времени, выполните вычисления мгновенных значений реактивной мощности.
Таблица 5.5.1
Время t, мс | Ток iL, мА | Напряжение uL, В | p= uL iL, мВт |
0 | | | |
0,1 | | | |
0,2 | | | |
0,3 | | | |
0,4 | | | |
0,5 | | | |
0,6 | | | |
0,7 | | | |
0,8 | | | |
0,9 | | | |
1,0 | | | |
-
Перенесите данные табл. 5.5.1 на график (рис. 5.5.3).
Рис. 5.5.3
-
По графику p(t) определите максимальную возвращаемую мощность (реактивную мощность)
QL= (Рмакс – Рмин) / 2 =
-
Сравните эту мощность с мощностью, измеренной варметром:
QL= …
6. Цепи синусоидального тока с резисторами, конденсаторами и катушками индуктивности
Эксперименты данного раздела касаются взаимодействия резисторов, конденсаторов и катушек индуктивности при переменном синусоидальном напряжении.
Цель состоит в измерении и расчете токов, напряжений и их фазовых сдвигов, также как и эквивалентных параметров цепей при параллельном и последовательном соединении резисторов, конденсаторов и катушек.
Действующие значения и фазы соответствующих величин могут быть показаны на векторных диаграммах или на осциллограммах.
На векторной диаграмме каждая синусоидальная функция времени (ток или напряжение) представляется вектором, длина которого соответствует в выбранном масштабе амплитуде или действующему значению, а направление определяется начальной фазой, отсчитываемой от выбранного начала отсчета углов. Например, напряжение u = Um sin (t+) изображается вектором длиной Um или Um/2, расположенным под углом к горизонтали. Векторные изображения синусоидальных величин в дальнейшем будут подчеркиваться.
6.1. Последовательное соединение резистора и конденсатора
6.1.1. Общие сведения
Когда к цепи (рис. 6.1.1) с последовательным соединением резистора и конденсатора подается переменное синусоидальное напряжение, один и тот же синусоидальный ток имеет место в обоих компонентах цепи.
Рис. 6.1.1
Между напряжениями UR, UC и U существуют фазовые сдвиги, обусловленные емкостным реактивным сопротивлением XC конденсатора. Они могут быть представлены с помощью векторной диаграммы напряжений (рис. 6.1.2
Рис. 6.1.2
Фазовый сдвиг между током I и напряжением на резисторе UR отсутствует, тогда как сдвиг между этим током и падением напряжения на конденсаторе UC равен -900 (т.е. ток опережает напряжение на 900). При этом сдвиг между полным напряжением цепи U и током I определяется соотношением между сопротивлениями XC и R.
Если каждую сторону треугольника напряжений разделить на ток, то получим треугольник сопротивлений (рис.6.1.13). В треугольнике сопротивлений Z представляет собой так называемое полное сопротивление цепи.
Рис. 6.1.3
Из-за фазового сдвига между током и напряжением в цепях, подобных данной, простое арифметическое сложение действующих или амплитудных значений напряжений на отдельных элементах цепи невозможно. Невозможно и сложение разнородных (активных и реактивных) сопротивлений. Однако, в векторной форме
U = UR +UC.
Действующее значение полного напряжения цепи, как следует из векторной диаграммы
= Z I
Полное сопротивление цепи
= U I
Активное сопротивление цепи
R = Z cos
Емкостное реактивное сопротивление цепи
XC = Z sin
Угол сдвига фаз
= arctg (-UC UR) = arctg (-ХC R)
6.1.2. Экспериментальная часть
Задание
Для цепи с последовательным соединением резистора и конденсатора измерьте и вычислите действующие значения падений напряжения на резисторе UR и конденсаторе UC, ток I, угол сдвига фаз , полное сопротивление цепи Z и емкостное реактивное сопротивление XC и активной сопротивление R.
Порядок выполнения работы
-
Соберите цепь согласно схеме (рис. 6.1.4), подсоедините регулируемый источник синусоидального напряжения и установите его параметры: U = 5 В, f = 1 кГц.
Рис. 6.1.4
-
Выполните мультиметрами или виртуальными приборами измерения действующих значений тока и напряжений, указанных в табл. 6.1.1. При измерениях напряжений подключайте мультиметр или канал V0 коннектора к зажимам C-E, C-D, D-E:
Таблица 6.1.1.
-
U, B
UR, B
UC, B
I, мА
, град
R, Ом
XC, Ом
Z, Ом
Примечание
Расчет
Вирт. Изм
-
Вычислите:
Фазовый угол
= arctg (UC UR) =
Полное сопротивление цепи
Z = U I =
Активное сопротивление цепи
R = Z cos
Емкостное реактивное сопротивление цепи
XC = Z sin
-
Если вы работаете с виртуальными приборами, то измерьте с помощью блока «Приборы II» R, , XC, Z и запишите их значения также в таблицу 6.1.1 под рассчитанными величинами. Сравните результаты.
-
Выберите масштабы и постройте векторную диаграмму напряжений (рис. 6.1.5) и треугольник сопротивлений (рис. 6.1.6).
Рис. 6.1.5 Рис. 6.1.6