Файл: Учебнометодический комплекс для заочного обучения с применением дистанционных технологий для студентов специальности 190702 Организация и безопасность дорожного движения.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 03.12.2023
Просмотров: 873
Скачиваний: 1
СОДЕРЖАНИЕ
1.Основы построения локальной сети
1.1.Классификация локальной сети
1.2.Локальные компьютерные сети. Основные определения, классификация топологий
1.3.Основные компоненты компьютерных сетей. Их преимущества и недостатки
1.4.Физическая среда передачи ЭВС, виды применяемых кабелей, их маркировка
1.5.Сетевая карта. Общие принципы, функционирование установка и настройка
2.Безпроводные компьютерные сети
2.2.Сигналы для передачи информации
2.4.Кодирование и защита от ошибок
2.5. Пропускная способность канала
2.6.Методы доступа к среде в беспроводных сетях
2.7.Виды сигналов связи и способы их обработки
3.Основы безопасности компьютерных сетей
3.1 Система защиты от утечек конфиденциальной информации
3.2.Специфика проектов внутренней информационной безопасности
3.4.Практические мероприятия по защите информации
3.7.Шифрование данных в интернет-компьютерной сети
4.1.Территориально распределенные пользователи систематического видеонаблюдения
4.2.Функции видеонаблюдения. Основные элементы и схемы построения
4.3.Технология распознавания автомобильных номеров
5.Автоматизированная система управления движением
5.1. Назначения и функции АСУД
5.3.Современные АСУД. Расширенные возможности
6.1. Классификация дорожных контроллеров
7.1. Назначения и классификация
7.2. Принципы действия основные элементы
7.3. Сравнение различных систем детектора транспорта
8.Спутниковые и радионавигационные системы GPS и Глонасс
8.1.Назначения и принципы работы
8.2. Источники ошибок и основные сегменты
8.3. Современные навигационные системы на автомобильном транспорте
8.4. Современная спутниковая система навигации
8.5. История создания спутниковых навигационных систем
8.6.Среднеорбитные спутниковые навигационные системы СНС GPS
8.8.Точность определения координат объектов
8.10. Проблемы и перспективы автомобильной спутниковой навигации
9.1. Структура интеллектуального АТС
10.1. Общие сведения и характеристика
12.Цифровая радиосвязь стандарта АРСО-25
12.1.Основные определения и элементы
12.6. Шифрование и аутентификация
12.7.Вызовы и управления сетей
Примеры Раций стандарта АРСО 25 отечественного и иностранного производства
Уплотнение с пространственным разделением
Основано на разделении сигналов в пространстве, когда передатчик посылает сигнал, используя код c, время t и частоту f области si. To есть каждое беспроводное устройство может вести передачу данных только в границах определенной территории, на которой любому другому устройству запрещено передавать свои сообщения.
К примеру, если радиостанция вещает на строго определенной частоте на закрепленной за ней территории, а какая-либо другая станция в этой же местности также начнет вещать на той же частоте, слушатели радиопередач не смогут получить "чистый" сигнал ни от одной из этих станций. Другое дело, если радиостанции работают на одной частоте в разных городах. Искажений сигналов каждой радиостанции не будет в связи с ограниченной дальностью распространения сигналов этих станций, что исключает их наложение друг на друга.
Характерный пример - системы сотовой телефонной связи.
Уплотнение с частотным разделением (Frequency Division Multiplexing - FDM)
Каждое устройство работает на определенной частоте, благодаря чему несколько устройств могут вести передачу данных на одной территории (рис. 2.5). Это один из наиболее известных методов, так или иначе используемый в самых современных системах беспроводной связи.
Рисунок 2.5 Принцип частотного разделения каналов
Наглядная иллюстрация схемы частотного уплотнения - функционирование в одном городе нескольких радиостанций, работающих на разных частотах. Для надежной отстройки друг от друга их рабочие частоты должны быть разделены защитным частотным интервалом, который позволяет исключить взаимные помехи.
Эта схема, хотя и позволяет использовать множество устройств на определенной территории, сама по себе приводит к неоправданному расточительству обычно скудных частотных ресурсов, поскольку требует выделения своей частоты для каждого беспроводного устройства.
Уплотнение с временным разделением (Time Division Multiplexing - TDM)
В данной схеме распределение каналов идет по времени, т. е. каждый передатчик транслирует сигнал на одной и той же частоте области s, но в различные промежутки времени (как правило, циклически повторяющиеся) при строгих требованиях к синхронизации процесса передачи (
рис. 2.6).
Подобная схема достаточно удобна, так как временные интервалы могут динамично перераспределяться между устройствами сети. Устройствам с большим трафиком назначаются более длительные интервалы, чем устройствам с меньшим объемом трафика.
Основной недостаток систем с временным уплотнением - это мгновенная потеря информации при срыве синхронизации в канале, например из-за сильных помех, случайных или преднамеренных. Однако успешный опыт эксплуатации таких знаменитых TDM-систем, как сотовые телефонные сети стандарта GSM, свидетельствует о достаточной надежности механизма временного уплотнения.
Уплотнение с кодовым разделением (Code Division Multiplexing - CDM)
В данной схеме все передатчики транслируют сигналы на одной и той же частоте f, в области s и во время t, но с разными кодами Ci.
Именем основанного на CDM механизме разделения каналов (CDMA - CDM Access) даже назван стандарт сотовой телефонной связи IS-95a, а также ряд стандартов третьего поколения сотовых систем связи (cdma2000, WCDMA и др.).
Рисунок 2.6 Принцип временного разделения каналов
В схеме CDM каждый передатчик заменяет каждый бит исходного потока данных на CDM-символ - кодовую последовательность длиной в 11, 16, 32, 64 и т. п. бит (их называют чипами). Кодовая последовательность уникальна для каждого передатчика. Как правило, если для замены "1" в исходном потоке данных используют некий CDM-код, то для замены "0" применяют тот же код, но инвертированный.
Приемник знает CDM-код передатчика, сигналы которого должен воспринимать. Он постоянно принимает все сигналы и оцифровывает их. Затем в специальном устройстве (корреляторе) производится операция свертки (умножения с накоплением) входного оцифрованного сигнала с известным ему CDM-кодом и его инверсией. В несколько упрощенном виде это выглядит как операция скалярного произведения вектора входного сигнала и вектора с CDM-кодом. Если сигнал на выходе коррелятора превышает некий установленный пороговый уровень, приемник считает, что принял 1 или 0. Для увеличения вероятности приема передатчик может повторять посылку каждого бита несколько раз. При этом сигналы других передатчиков с другими CDM-кодами приемник воспринимает как аддитивный шум. Более того, благодаря большой избыточности (каждый бит заменяется десятками чипов), мощность принимаемого сигнала может быть сопоставима с интегральной мощностью шума. Сходства CDM-сигналов со случайным (гауссовым) шумом добиваются, используя CDM-коды, порожденные генератором псевдослучайных последовательностей. Поэтому данный метод еще называют методом расширения спектра сигнала посредством прямой последовательности (DSSS - Direct Sequence Spread Spectrum); о расширении спектра будет рассказано ниже.
Наиболее сильная сторона данного уплотнения заключается в повышенной защищенности и скрытности передачи данных: не зная кода, невозможно получить сигнал, а в ряде случаев - и обнаружить его присутствие. Кроме того, кодовое пространство несравненно более значительно по сравнению с частотной схемой уплотнения, что позволяет без особых проблем присваивать каждому передатчику свой индивидуальный код. Основной же проблемой кодового уплотнения до недавнего времени являлась сложность технической реализации приемников и необходимость обеспечения точной синхронизации передатчика и приемника для гарантированного получения пакета.
Механизм мультиплексирования посредством ортогональных несущих частот (Orthogonal Frequency Division Multiplexing - OFDM)
Суть этого механизма: весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N - число поднесущих, назначенных данному передатчику.
Распределение поднесущих в ходе работы может динамически изменяться, что делает данный механизм не менее гибким, чем метод временного уплотнения.
Схема OFDM имеет несколько преимуществ. Во-первых, селективному замиранию будут подвержены только некоторые подканалы, а не весь сигнал. Если поток данных защищен кодом прямого исправления ошибок, то с этим замиранием легко бороться. Во-вторых, что более важно, OFDM позволяет подавить межсимвольную интерференцию. Межсимвольная интерференция оказывает значительное влияние при высоких скоростях передачи данных, так как расстояние между битами (или символами) мало. В схеме OFDM скорость передачи данных уменьшается в N раз, что позволяет увеличить время передачи символа в N раз. Таким образом, если время передачи символа для исходного потока составляет Ts, то период сигнала OFDM будет равен NTs. Это позволяет существенно снизить влияние межсимвольных помех. При проектировании системы N выбирается таким образом, чтобы величина NTs значительно превышала среднеквадратичный разброс задержек канала.
Технология расширенного спектра
Изначально метод расширенного спектра создавался для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. Первая разработанная схема расширенного спектра известна как метод перестройки частоты. Более современной схемой расширенного спектра является метод прямого последовательного расширения. Оба метода используются в различных стандартах и продуктах беспроводной связи.
Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum - FHSS)
Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот была псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации. Идею этого метода иллюстрирует рис. 2.7.
В течение фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции, такие как FSK или PSK. Для того чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.
Рисунок 2.7 Расширение спектра скачкообразной перестройкой частоты
Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.
Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра; в противном случае мы имеем дело с быстрым расширением спектра.
Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.
Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и сопряжен с меньшими накладными расходами.
Методы FHSS используются в беспроводных технологиях IEEE 802.11 и Bluetooth.
В FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования - вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным - ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо - коды расширенного спектра можно использовать и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей, чтобы в каждый момент времени каждый канал работал на своей частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).
Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum - DSSS)
В методе прямого последовательного расширения спектра также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS, весь частотный
диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N-
битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.