Файл: Н. Ельцина А. А. Повзнер, А. Г. Андреева, К. А. Шумихина Физика Базовый курс. Часть ii.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 278

Скачиваний: 9

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Оглавление

1. Электромагнитные явления

1.1. Опыты Фарадея. Явление электромагнитной индукции

1.2. Закон электромагнитной индукции Фарадея. Природа сторонних сил. Правило Ленца.

1.3. Применение явления электромагнитной индукции в технике. Рассмотрим некоторые примеры применения явления электромагнитной индукции в технике.1. Определение модуля вектора магнитной индукции . Для определения модуля в магнитное поле помещается катушка малой площадиS поперечного сечения, содержащая N витков. В цепь катушки включается баллистический гальванометр, время измерения которого значительно превышает время поворота катушки в магнитном поле из состояния 1 в состояние 2 (рис. 1.4). Поэтому такой прибор измеряет не силу индукционного тока, а заряд q, протекающий по цепи за время поворота [1].Рис. 1.4Получим формулу для модуля В. Введём понятие потокосцепления Ψ как произведения числа витков N на магнитный поток, пронизывающий один виток, и перепишем с учётом этого формулу (1.1), . (1.5)Итак,, . (1.6)В нашем случае, с учётом однородности поля в пределах катушки малого сечения, можно записать, где Rц – сопротивление цепи.Полученное выражение по известным параметрам N, S, Rц и измеренного значения q позволяет найти значение модуля вектора в данной точке магнитного поля.2. Токи Фуко – это индукционные токи, возникающие в массивных проводниках. Для таких проводников сопротивление R будет мало и поэтому индукционные токи (Ii = ei/R) достигают большой величины. Их можно использовать для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры) получают особо чистые металлы и сплавы.Токи Фуко могут приводить и к нежелательным явлениям - к нагреву сердечников трансформаторов, электродвигателей и т.д. Поэтому в этих случаях увеличивают сопротивление массивного проводника, набирая его в виде отдельных пластин, и тем самым уменьшают нагрев проводников [1]. Действительно, сила индукционных токов в отдельных пластинах существенно уменьшается по сравнению с силой тока, текущего по массивной пластине, и в соответствии с формулой уменьшается и выделяемое в проводнике количество теплоты.1.4. Явление самоиндукции. 1.4.1. Индуктивность контура. Индуктивность соленоида В озьмём контур, по которому протекает ток I. Он создаёт в окружающем пространстве магнитное поле, линии которого пронизывают плоскость контура (рис. 1.5). Возникающий при этом магнитный поток получил название магнитного потока самоиндукции , так как сам ток наводит, индуцирует этот магнитный поток.Рис. 1.5Под явлением самоиндукции можно понимать явление возникновения магнитного потока самоиндукции при протекании по цепи тока. В случае, когда контур содержит N витков, используют понятие потокосцепления самоиндукции ( ) [1]. Оказывается, что и I прямо пропорциональны друг другу и поэтому можно записать, (1.7)где коэффициент пропорциональности L называют индуктивностью контура. Он описывает способность контура создавать потокосцепление самоиндукции и равен отношению и I.. (1.8)Индуктивность контура зависит от геометрических размеров контура, а через относительную магнитную проницаемость m и от магнитных свойств окружающей среды. Для ферромагнитных сред mзависит от силы текущего по проводнику тока, что приводит к зависимости L для таких сред от I.Приведем пример расчета индуктивности для длинного соленоида. Рассмотрим соленоид, для которого его длина во много раз превышает диаметр витков. В этом случае для модуля вектора можно воспользоваться формулой (1.8) и, следовательно, для L получим, (1.9)где V – объём, занимаемый соленоидом.1.4.2. ЭДС самоиндукции. Правило Ленца Можно дать другое эквивалентное определение явления самоиндукции, а именно, – это явление возникновения ЭДС. индукции ei в том контуре, по которому протекает переменный ток. Возникающие при этом ЭДС индукции ei и индукционный ток Ii называют ЭДС самоиндукции eS и током самоиндукции . Для них с учётом формул (1.5) и (1.8) можно записать. (1.10)Правило Ленца для явления самоиндукции формулируется следующим образом: ток самоиндукции препятствует любым изменениям основного тока, текущего по цепи [2].Из формулы (1.10) следует, что любые изменения тока в цепи тормозятся и тем сильнее, чем больше индуктивность цепи и меньше ее сопротивление.Можно сказать, что индуктивность цепи является мерой её электрической инертности, подобно тому, как масса в механике является мерой инертности тела при его поступательном движении [1].1.4.3. Зависимость силы тока от времени при размыкании и замыкании цепи Рассмотрим электрическую цепь, приведённую на рис. 1.6,а. Она содержит источник постоянного тока с ЭДС e, катушку индуктивности L, сопротивления R и r , а также ключ К. Когда ключ К находится в положении 1, по цепи протекает постоянный ток I0= e/R, а в катушке сосредоточена энергия в виде энергии WМ магнитного поля. В момент времени t= 0 ключ К перебрасывают в положение 2, цепь размыкается и ток в ней начинает убывать, он убывает постепенно за счёт возникающего в катушке явления самоиндукции. При этом запасённая в катушке энергия магнитного поля расходуется на поддержание убывающего тока, расходуется на нагревание проводников. Рис. 1.6Отметим, что размыкание электрической цепи означает, что в неё вводят бесконечно большое сопротивление r (r ®¥) и поэтому r>>R. Цепь считается разомкнутой, если сила тока в ней достигает значений порядка

2. колебания и волны

2.1. Незатухающие механические колебания

2.2. Сложение гармонических колебаний

2.3. Затухающие колебания

2.4. Вынужденные механические колебания

2.5. Волны в упругой среде

2.6. Свободные незатухающие электромагнитные колебания.

2.7. Затухающие электромагнитные колебания

2.8. Электромагнитные волны

3. Волновая оптика

3.1. Интерференция света

3.2. Дифракция

3.3. Поляризация света 3.3.1. Естественный и поляризованный свет. Виды поляризованного света Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга. Поэтому световая волна, излучаемая телом, характеризуется всевозможными равновероятными направлениями колебания вектора в плоскости, перпендикулярной к скорости распространения волны (рис. 3.19), причем модули векторов одинаковы. Такой свет называется естественным. Рис. 3.19Под поляризацией света понимают ту или иную степень упорядоченности колебаний светового вектора (вектора ) электромагнитной волны в пространстве.Рис. 3.20Свет называется линейно поляризованным (плоско поляризованным), если колебания электрического (светового) вектора происходят вдоль одного направления (рис.3.20). Плоскость, проходящая через вектор и направление луча, называется плоскостью поляризации.Свет, в котором в результате каких – либо внешних воздействий появляется преимущественное (но не единственное) направление колебаний вектора , называется частично поляризованным.Рис. 3.21При сложении двух световых волн одинаковой частоты, линейно поляризованных во взаимно перпендикулярных плоскостях, результирующий вектор может поворачиваться по мере распространения волны (происходит сложение взаимно перпендикулярных колебаний одинаковой частоты). Свет, у которого конец вектора , вращаясь вдоль направления луча, описывает эллипс (см. рис. 3.21), называется эллиптически поляризованным, если – окружность, то поляризованным по кругу.3.3.2. Получение линейно поляризованного света. Закон Малюса Поляроидами называют вещества, которые позволяют получить линейно – поляризованный свет (ЛПС). Например, если взять пленки, изготовленные из длинных цепочек углеводородных молекул, то при падении на нее неполяризованного света (НПС), на выходе из пленки получают линейно – поляризованный свет (рис. 3.22,а) [5].Рис. 3.22Это объясняется тем, что составляющая вектора ( ), параллельная направлению, вдоль которого вытянуты эти молекулы, вызывает интенсивное движение электронов в молекулах и поэтому полностью поглощается поляроидом. Составляющая вектора ( ), направленная перпендикулярно длине цепочек молекул (это направление называется осью пропускания поляроида), интенсивного движения электронов не вызывает, и эта составляющая проходит поляроид без изменения [5].На выходе поляроида получается ЛПС, для которого вектор совершает колебания вдоль оси пропускания. Если на поляроид направить ЛПС (рис. 3.22,б), то тогда интенсивность прошедшего через поляроид ЛПС ( ) связана с интенсивностью падающего на него света (

4. Квантовая оптика

4.1. Тепловое излучение

4.2. Внешний фотоэффект Внешним фотоэффектом называют явление выбивания электронов из металла под действием падающего излучения.Объяснение опытных законов фотоэффекта приводит к выводу о том, что электромагнитное излучение не только испускается атомами в виде отдельных порций энергии, но также распространяется и поглощается отдельными порциями энергии, называемыми фотонами. Рассмотрим, как этот вывод был сделан. 4.2.1. Вольт-амперная характеристика, ее основные закономерности. Основные законы фотоэффекта были изучены на установке, схема которой приведена на рис. 4.4, а.Внутри вакуумной трубки (баллона) находятся два электрода – анод и катод, между которыми прикладывается напряжение . На катод через кварцевое окно падает монохроматическое электромагнитное излучение, оно выбивает из металла электроны, они летят на анод, цепь замыкается, в цепи возникает электрический ток. Напряжение между анодом и катодом измеряется вольтметром, а сила тока – амперметром. На этой установке снимаются вольт-амперные характеристики при разных условиях проведения опытов – разные интенсивности и частоты падающего света, различные металлы, из которых изготовляется катод. Для примера одна из вольт-амперных характеристик приведена на рис. 4.4,в. Обсудим ее основные особенности.Рис. 4.41). . При напряжении , равном нулю, электрический ток в цепи отличен от нуля (рис. 4.4,б). Электроны, вылетающие с поверхности катода под действием падающего электромагнитного излучения, притягиваются к положительно заряженному металлу и возвращаются снова на металл. Вблизи металла образуется электронное облако, которое образовано электронами, покидающими и возвращающимися на катод. Однако существуют электроны, скорость которых при выходе из металла будет наибольшей. Они способны преодолевать двойной электрический барьер (металл притягивает вылетающий электрон, а электронное облако его отталкивает) вблизи поверхности металла и достигать анода.2). Напряжение на трубке больше нуля (катод подключается к минусовому зажиму источника напряжения, ). В этом случае в трубке появляется электрическое поле и, как следствие, - “электрический ветер”, который сносит электроны на анод. Число электронов, достигающих анода, возрастает, электронное облако становится меньше и при больших напряжениях полностью исчезает. Электрический ток достигает насыщения , так как все электроны, выбиваемые с поверхности катода, достигают анода.3). Напряжение на трубке меньше нуля ( ). Электрическое поле, возникающее при этом в трубке, тормозит электроны. Появляется “электрический ветер”, который препятствует движению электронов к аноду. Сила электрического тока падает и при напряжении, называемом задерживающим напряжением , обращается в ноль. При этом даже самые быстрые электроны не достигают анода, т.е. кулоновская сила электрического поля совершает работу по уменьшению скорости таких электронов до нуля. Согласно теореме о кинетической энергии можно записать следующее равенство:.4.2.2. Уравнение Эйнштейна для фотоэффекта. Согласно Планку электромагнитное излучение испускается в виде отдельных порций энергии, квантов. Эйнштейн предположил, что электромагнитное излучение не только испускается, но также распространяется и поглощается в виде отдельных порций энергии, которые получили название фотонов. Следовательно, электромагнитное излучение представляет собой поток особых частиц, называемых фотонами, они обладают корпускулярно волновым дуализмом, сочетают в себе свойства и частицы и волны. Для расчета энергии фотона используют следующие формулы:, (4.18)в которые входит постоянная Планка , масса и импульс фотона, длина волны и частота электромагнитного излучения.Согласно Эйнштейну электрон поглощает фотон. Энергия фотона позволяет электрону выйти из металла (это требует энергии ) с кинетической энергией . На основе закона сохранения энергии для такого процесса можно записатьЭнергия выхода электрона из металла изменяется в зависимости от расстояния, на котором находится электрон внутри металла до его поверхности. Для электронов, вылетающих с поверхности металла, энергия выхода будет минимальной (она для каждого металла имеет определенное значение и называется работой выхода ), а их кинетическая энергия будет соответственно максимально возможной. В этом случае уравнение примет вид:. (4.19)Полученное уравнение получило название уравнения Эйнштейна для фотоэффекта. 4.2.3. Опытные законы фотоэффекта, их объяснение. Приведем формулировку экспериментальных законов фотоэффекта, открытых Столетовым в 1886-1889 гг., и их объяснение с точки зрения волновой и корпускулярной теории.1 закон. Сила фототока насыщения прямо пропорциональна падающему на катод потоку электромагнитного излучения при фиксированном его спектральном составе ( ). В соответствии с формулой (4.18) для потока падающего на металл излучения и для силы фототока насыщения можно записать, ,где и - число падающих на катод фотонов и число электронов, вылетающих из него за время . Известно, что лишь малая часть фотонов выбивает электроны, большая часть фотонов поглощается металлом, идет на его нагревание. Можно записать формулу связи между числом падающих фотонов и числом вылетающих электронов ,где входящая в это выражение постоянная существенно меньше единицы.Учитывая это соотношение, можно получить следующую формулу связи: , (4.20)что подтверждает первый закон фотоэффекта. Действительно, при постоянной частоте падающего излучения ( ) из формулы (4.20) следует, что .Волновая теория также объясняет первый закон, так как энергия падающей волны определяется ее амплитудой и частотой. Увеличение потока падающего монохроматического излучения связано с увеличением его амплитуды, что и приводит к выбиванию большего числа электронов из металла, т.е. к большей силе тока насыщения.2 закон. Максимальная кинетическая энергия вылетающих с поверхности катода электронов зависит линейно от частоты падающего излучения и не зависит от его интенсивности.Для объяснения второго закона запишем уравнение Эйнштейна в следующем виде:(4.21)Из этого уравнения следует, что максимальная кинетическая энергия вылетающих электронов будет пропорциональна частоте падающего излучения (

4.3. Эффект Комптона.

4.4. Природа электромагнитного излучения. Корпускулярно-волновой дуализм

5. Элементы квантовой механики

5.1. Идея де Бройля. Опыты, подтверждающие волновые свойства микрочастиц

5.2. Соотношения неопределенностей Гейзенберга

5.3. Волновая функция. Стандартные условия. Уравнение Шредингера.

6. Основы физики атомного ядра 6.1. Строение и состав атомного ядра В опытах Резерфорда по рассеянию -частиц веществом (1911 г.) было доказано, что положительный заряд и практически вся масса атома сосредоточены в малом по размерам ядре (линейные размеры ядра составляют порядка , а размеры атома

6.2. Ядерные реакции Под ядерной реакцией понимают процесс взаимодействия ядер или ядра и элементарной частицы, приводящий к их взаимному превращению. Общая схема ядерной реакции выглядит таким образом:, (6.6)или в краткой форме , (6.7)где − обозначают исходное и образующееся в результате реакции ядро; известные частицы, которые часто встречаются в различных ядерных реакциях, – это электрон ( ), позитрон ( ), протон (p), нейтрон (n), -частица ( ) и т.д.При протекании любой ядерной реакции выполняются следующие законы сохранения:1) энергии ( ); 2) импульса ( ); 3) момента импульса ( ); 4) электрического заряда ( ); 5) массового числа А ( ).Можно также отметить выполнение законов сохранения, введенных для описания взаимодействий между элементарными частицами. Это законы сохранения лептонного заряда, изоспина (только в сильном взаимодействии), четности (за исключением реакций, происходящих с участием слабого взаимодействия, это -распады) и т.д. Энергия ядерной реакции - это энергия, которая выделяется или поглощается при протекании ядерной реакции. По определению она равна разности энергий покоя исходных ядер (частиц) и ядер (частиц), образующихся в результате ядерной реакции(6.8)Учитывая закон сохранения энергии и разделение полной энергии на энергию покоя и кинетическую энергию ( ), можно записать следующую формулу:. (6.9)Согласно выражению (6.9) энергия при ядерной реакции выделяется ( ) в виде кинетической энергии продуктов реакции. Если же , то энергия при протекании ядерной реакции поглощается.6.3. Явление радиоактивности 6.3.1. Виды радиоактивного распада ядер Явление радиоактивности (р-а) заключается в самопроизвольном распаде ядер с испусканием элементарных частиц. Выделяют бета ( )- и альфа ( )-распады, они сопровождаются испусканием гамма ( )-лучей. Атомное ядро, испытывающее р-а распад, называют материнским, а образующееся при этом ядро – дочерним. Для того чтобы определить параметры ядра, получаемого при р-а распаде, применяют правила смещения, они позволяют правильно установить изменение таких параметров ядра, как его заряд и массовое число.Выделяют три вида -распада - это -распад (из ядра вылетает электрон ), -распад (из ядра вылетает позитрон ) и электронный захват (e-захват, ядро захватывает один электрон с К-слоя, L - слоя, M – слоя и т.д.). При - распаде из ядра вылетает -частица, представляющая собой ядро атома гелия (спин и магнитный момент -частицы равны нулю).Для этих видов распада правила смещения записываются следующим образом:-распад: , (6.10)-распад: , (6.11)e-захват: , (6.12)-распад: . (6.13)Из этих правил следует, что все радиоактивные ядра объединяются в р-а семейства, число которых равно четырем - это семейства (или ряды) тория ( ), нептуния ( ), урана ( ) и актиния ( ). Для них массовое число определяется следующим образом:, , , , (6.14)где число принимает целочисленные значения. Каждый член ряда получается из предыдущего путем – или –распадов. Поэтому у соседних членов ряда массовые числа либо одинаковы (они являются изобарами) или отличаются на четыре.6.3.2. Основной закон радиоактивного распада. Активность радиоактивного вещества 1. Основной закон радиоактивного распада. Для любого радиоактивного вещества нельзя предсказать момент времени распада того или иного ядра, известна лишь вероятность его распада. Причем на распад ядра не влияет тип вещества, его нагрев, сжатие - ядро распадается само по себе, независимо от других ядер. Все это свидетельствует о том, что все процессы р-а распада подчиняются общим законам, согласно которым вероятность распада одного ядра в единицу времени является для данного типа ядра постоянной величиной. Ее принято называть постоянной распада , она дает вероятность распада одного ядра за единицу времени. Если обозначить число ядер, не распавшихся в радиоактивном веществе к моменту времени , через , а число распавшихся за время ( ) ядер через ( ), то для вероятности распада ядра за единицу времени можно записать,откуда следует основной закон радиоактивного распада. (6.15)В выражении (6.15) через обозначено начальное число радиоактивных ядер в веществе.2. Период полураспада Т. Среднее время жизни радиоактивного ядра. Для количественного описания явления р-а вводят понятия периода полураспада и среднего времени жизни ядра. Период полураспада - это время, за которое распадается половина первоначального количества ядер: . Он связан с постоянной распада формулой. (6.16)Получим формулу для среднего времени жизни ядра. За время ( ) распадается ядер, их время жизни можно считать одинаковым и равным , это связано с малостью интервала . Суммарное время жизни этих ядер будет равно (- ). Суммируя время жизни ядер по всем интервалам от нуля до бесконечности и деля эту сумму на первоначальное количество частиц , получим,. (6.17)3. Активность радиоактивного вещества. Для описания интенсивности протекания процессов распада в радиоактивном веществе вводят понятие активности радиоактивного вещества. Активность радиоактивного вещества определяет число распадов в р-а веществе за единицу времени, (6.18) где начальная активность р-а вещества равна. (6.19)Единицей измерения активности в СИ является беккерель (Бк). При активности р-а вещества в 1 Бк в веществе происходит один распад за одну секунду (1Бк = 1 распад/с). Применяется более крупная единица, называемая кюри, она составляет .6.3.3. b-распад ядер Как известно, электроны и позитроны не входят в состав ядра, поэтому они образуются в момент вылета из ядра при распаде нуклонов за счет слабого взаимодействия. Следовательно, b – распад это внутринуклонный процесс. При этом протекают следующие реакции:- распад: , (6.20)- распад: , (6.21)e – захват: . (6.22)Реакция (6.20) протекает с выделением энергии, поэтому она может протекать и для нейтрона, находящегося в свободном состоянии. Реакция (6.21) происходит с поглощением энергии и поэтому протекает только внутри ядра, где протон может получить необходимую для протекания такой реакции энергию от других нуклонов.Электронный захват сопровождается характеристическим рентгеновским излучением, вызванным переходами электронов на освободившееся место либо в К-слое, либо в L-слое и т.д.Нужно отметить, что исторически нейтрино (антинейтрино) были открыты в реакциях -распада ядер. На существование этих частиц указывали сплошной спектр энергий вылетающих из атома электронов, а также нарушение законов сохранения импульса и момента импульса в этих реакциях. Так, энергетический спектр электронов (он дает распределение числа электронов по кинетическим энергиям ) оказался сплошным кинетическая энергия вылетающих электронов изменялась непрерывно от нуля до максимального значения (рис. 6.3). Этот факт можно было объяснить тем, что при такой реакции образуется еще одна частица (антинейтрино), которая и забирает у электрона часть освобождающейся при реакции энергии (такое предположение сделал Паули, а название частице было дано Ферми).Р ис. 6.3Причем распределение энергии между этими частицами будет различным для отдельных актов распада. Для случая электрон забирает практически всю энергию.Для того чтобы определить параметры ядра, получаемого при р-а распаде, применяют правила смещения, они позволяют правильно установить изменение таких параметров ядра, как его заряд и массовое число. Эти правила были введены задолго до открытий частиц нейтрино и антинейтрино. Однако, в связи с тем, что массовое число и электрический заряд нейтрино и антинейтрино равны нулю, их присутствие в реакциях распада не сказывается на правилах смещения. Необходимо помнить, что отсутствие нейтрино (антинейтрино) в реакциях (6.10) и (6.11) приводит к невыполнению закона сохранения лептонного заряда, вводимого для частиц, вступающих в слабые взаимодействия.При прохождении b-излучения через вещество большая часть энергии тратится на ионизацию и возбуждение атомов и молекул среды. Присутствуют также и радиационные потери (при столкновениях изменяется скорость частицы и происходит излучение фотонов). Интенсивность пучка электронов за счет этих процессов плавно убывает до нуля.Пробег b – частиц в средах различен и зависит от энергии частиц и плотности среды. b-частицы с энергией меньше 0,1 МэВ проходят в воздухе путь, равный 10 см, в биологических тканях 0,16 мм, а b-частицы с энергией больше 1 МэВ соответственно 11 и 17, 5 мм. 6.3.4. -распад ядер -распад наблюдается для ядер, содержащих большое число нуклонов ( ), число таких ядер превышает 200 , имеется также около 20 -радиоактивных ядер среди лантанидов. Среднее время жизни р-а ядер колеблется в широких пределах от с ( ) до лет ( , ). Энергия -частиц, испускаемых тяжелыми ядрами составляет порядка ( ) МэВ, а ядрами лантанидов – ( ) МэВ.Широкие пределы изменения среднего времени жизни (периода полураспада ) р-а ядер при сравнительно малых изменениях энергии вылетающих -частиц находят свое отражение в экспериментально установленной формуле (Гейгер и Неттолла,1911 г.) , (6.23)из нее, в частности, следует, что. (6.24)В формуле (6.23) постоянные величиныb, c определяются из опыта. Из выражения (6.24) видно, что малые изменения энергии -частицы (показателя экспоненты) приводят к существенному изменению периода полураспада , т.е. самой экспоненты.Теоретическое объяснение -распад получил на основе туннельного эффекта. -частица, которая образуется в момент вылета из ядра, встречает на границе ядра высокий потенциальный барьер, который она преодолевает за счет туннельного эффекта (см. 5.3.2). Для вероятности выхода -частицы из ядра, т.е. для коэффициента прозрачности Dможно получить следующую формулу:. (6.25)Из формулы (6.24) можно получить формулу Гейгера – Неттолла (6.23), если учесть, что коэффициент прозрачности прямо пропорционален постоянной распада .Отметим, что для р-а ядер одного семейства, испытывающих -распад, энергия вылетающих -частиц изменяется незначительно относительно определенного значения : . В соответствии с формулой (6.24) малые изменения энергии -частиц должны привести к существенным изменениям периодов полураспада (на несколько порядков), что также подтверждается экспериментом.Энергия, выделяемая при –распаде, делится между -частицей и дочерним ядром обратно пропорционально их массам. Если дочернее ядро образуется в возбужденном состоянии, то кинетическая энергия -частицы уменьшается на энергию возбуждения и, напротив, возрастает, если распадается возбужденное ядро.Дискретность энергетических уровней энергии ядра приводит к тому, что возникают несколько групп -частиц, имеющих одну и ту же кинетическую энергию. Следовательно, тонкая структура спектров -частиц позволяет определить энергию возбужденных состояний ядер.Проходя через вещество, -частицы вызывают ионизацию и возбуждение атомов и молекул, а также диссоциацию молекул. Потери энергии -частиц на образование ядер отдачи и тормозное излучение будут незначительными.Большая начальная скорость -частиц ( ) приводит к тому, что до остановки они успевают образовать на своем пути примерно пар ионов.Траектория движения -частиц представляет собой отрезок прямой, причем интенсивность пучка -частиц остается постоянной, если пройденный ими путь меньше длины пробега R(это расстояние, проходимое в веществе частицей до ее полной остановки, т.е. до момента времени, когда она приходит в тепловое равновесие с окружающей средой). В воздухе длина пробега – частиц составляет несколько сантиметров, для плотных веществ – порядка 0,01мм.6.3.5. -излучение ядер -излучение не представляет собой самостоятельный вид радиоактивного распада. Оно сопровождает - и -распады, а также любые взаимные превращения ядер, при которых происходит переход ядра из возбужденных состояний в основное. Установлено, что -излучение испускается дочерним (а не материнским) ядром при его переходе из возбужденного состояния в основное состояние.-кванты не имеют электрического заряда, поэтому на них не действуют кулоновские силы. Масса покоя -квантов равна нулю, поэтому они могут двигаться только со скоростью света , т.е. они не могут замедляться в веществе, как -частицы и электроны.Параллельный пучок -квантов при прохождении через вещество рассеивается за счет таких процессов, как фотоэффект, эффект Комптона и образование электронно-позитронной пары. Для образования электронно-позитронной пары ( ) необходима энергия -кванта, равная , – это минимальная энергия, необходимая для образования электронно-позитронной пары. Поэтому этот процесс наблюдается при энергиях и является при таких энергиях практически единственным процессом поглощения -излучения в веществе.6.3.6. Цепные реакции деления тяжелых ядер Цепная реакция деления тяжелых ядер – это ядерная реакция, самопроизвольно поддерживающаяся в веществе за счет вовлечения в нее все нового и нового числа делящихся ядер. Среди изотопов урана ее можно осуществить для ядра . Под действием нейтрона, попадающего в ядро, оно возбуждается и делится на два радиоактивных осколка (ядра) разной массы, которые разлетаются с большими скоростями, и на два-три нейтрона (рис. 6.4).Нейтроны, вылетающие в процессе деления из ядра, могут, в свою очередь, вызвать реакцию деления соседних ядер , которые также испускают нейтроны, способные вызвать дальнейшее деление ядер. В итоге число делящихся ядер возрастает, возникает цепная реакция. Исследования показали, что деление может происходить разными путями, наиболее вероятным является деление на осколки, массы которых относятся как 2:3. Запишем одну из возможных реакций деления : , (6.26), . (6.27)Получаемые при делении урана осколки являются радиоактивными и после ряда превращений из них получаются стабильные изотопы церия и циркония (формула (6.109)).Энергетический выход при делении ядра урана составляет примерно 1 МэВ на нуклон, причем основную часть энергии уносят осколки. Основная характеристика ядерного реактора – его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит актов деления в 1 с.Состояние реактора характеризуется коэффициентом размножения нейтронов, он дает быстроту роста числа нейтронов, вызывающих деление ядер, и равен отношению числа нейтронов, вызвавших деление в данном поколении, к числу аналогичных нейтронов предыдущего поколения. Для цепной реакции, изображенной на рис. 6.31, коэффициент размножения нейтронов равен K = 3/2 =1,5. Если эффективный коэффициент размножения нейтронов в активной зоне больше единицы ( ), то цепная реакция нарастает во времени; если , то реакция затухает, а при идет стационарный процесс, число делений постоянно во времени. В качестве делящегося вещества в ядерном реакторе применяют , , . Если активная зона, кроме ядерного топлива содержит замедлитель нейтронов (графит, вода и другие вещества, содержащие легкие ядра), то основная часть делений происходит под действием тепловых нейтронов. 6.3.7. Термоядерные реакции Термоядерные реакции. Существует еще одно перспективное направление в ядерной энергетике, это управляемый термоядерный синтез (УТС). Под ним понимают процесс слияния легких атомных ядер, проходящий с выделением энергии, при высоких температурах в регулируемых управляемых условиях.Среди реакций синтеза легких ядер для УТС представляют интерес следующие термоядерные реакции:, (6.28), (6.29), (6.30). (6.31)В скобках указана энергия, которая выделяется при протекании реакции. Реакции синтеза легких ядер называют термоядерными, так как протекание таких реакций требует больших температур (порядка ), при которых смесь веществ превращается в плазму (ионизированный газ). Действительно, для того чтобы началась ядерная реакция, необходимо сблизить ядра до расстояний, на которых вступают в игру ядерные силы (порядка ). Для этого необходимо преодолеть кулоновское отталкивание ядер, что можно сделать, сообщая ядрам большую начальную скорость их сближения, т.е. нагревая плазму до высокой температуры.Разогрев плазмы до высоких температур является первым препятствием на пути осуществления термоядерного синтеза. Для нагрева плазмы свыше температуры применяют высокочастотный нагрев или ввод энергии в плазму с помощью потока быстрых нейтральных частиц.Вторым препятствием для осуществления УТС является необходимость удержания плазмы длительное время вне контакта со стенками рабочей камеры, так как любой контакт приводит к резкому снижению температуры плазмы и прекращению термоядерных реакций.6.3.8. Типы фундаментальных взаимодействий Согласно современным представлениям, в природе осуществляется четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное. Каждое из них можно охарактеризовать приведенными ниже параметрами.1. Константа взаимодействия характеризует максимальное значение силы взаимодействия или энергии взаимодействия, она является безразмерной величиной. 2. Радиус взаимодействия - расстояние, на котором эти взаимодействия являются наиболее интенсивными. 3. Длительность протекания процессов взаимодействия частиц за счет данного вида взаимодействия. Сильное взаимодействие  обеспечивает связь нуклонов в ядре. Константа сильного взаимодействия имеет значение 10. Максимальное расстояние, на котором проявляется сильное взаимодействие (радиус действия r), не превышает 10─15м.Электромагнитное взаимодействие  обеспечивает связь частиц (тел), имеющих электрический заряд. Константа взаимодействия равна 1/13710─2. Радиус действия не ограничен ( = ).Слабое взаимодействие ответственно: за все виды -распада ядер (включая е-захват), за многие распады элементарных частиц, за все процессы взаимодействия нейтрино с веществом. Константа взаимодействия равна 1014. Слабое взаимодействие, как и сильное, является короткодействующим (радиус действия r

Библиографический список

t (рис. 5.5, б).

Впервые основное уравнение квантовой механики – уравнение для волновой функции было записано в 1926 г. Э. Шредингером и получило название уравнения Шредингера.

Обычно рассматриваются силовые поля, которые явно не зависят от времени t. Они называются стационарными полями. В таких полях потенциальная энергия частицы не зависит от времени ( ), а полная энергия частицы остается постоянной ( ) [4]. Волновую функцию для частицы в этом случае можно представить в виде произведения временной ее части на координатную часть

. (5.10)

Для координатной части волновой функции уравнение Шредингера (его называют стационарным уравнением Шредингера) примет вид

. (5.11)

В этом уравнении - постоянная Планка, деленная на ; m – масса частицы; - потенциальная энергия частицы в силовом поле, в котором она движется; – оператор Лапласа, его действие на волновую функцию сводится к взятию вторых частных производных по координатам.

Уравнение Шредингера является основным уравнением квантовой механики, оно не выводится, его справедливость проверяется сопоставлением полученных из него результатов с опытными данными [4]. Его роль в квантовой механике такая же, как - уравнения Ньютона в классической механике, уравнения Максвелла в электродинамике или трех начал в термодинамике.

Решая уравнение Шредингера, можно найти энергетический спектр частицы и вероятность ее обнаружения в различных точках пространства. Эти сведения используются для анализа поведения частицы в потенциальном поле определенного вида. Более детальной информации квантовая механика о поведении частиц не дает.

Это не является недостатком теории, а является следствием вероятностного поведения частицы в пространстве. Нельзя думать, что будет создана теория, которая будет давать более детальную информацию о поведении частиц. Поведение частиц вне экспериментальной ситуации, т.е. самих по себе, нам не доступно, так как мы живем в макромире и используем понятия макромира. О наличии микромира мы узнаем из поведения частиц в экспериментальной ситуации, и это нужно помнить и не стараться брать из теории то, что она не может дать.

Рассмотрим решение ряда задач квантовой механики, имеющих точное решение. Таких задач существует немного, и они играют важную роль при анализе экспериментальных данных.

5.3.1. Микрочастица в прямоугольной потенциальной яме с бесконечно высокими стенками



Потенциальной ямой называется область пространства, в которой потенциальная энергия частицы много меньше, чем в соседних областях.

Постановка задачи. Рассмотрим одномерную задачу о движении частицы во внешнем силовом поле, в котором потенциальная энергия частицы задана следующими соотношениями:

(5.12)

Вид потенциального поля приведен на рис. 5.6,а. Из него видно, что частица находится в потенциальной яме ( ) с бесконечно высокими прямоугольными стенками, за пределы которой она выйти не может.

Рис. 5.6

Решение уравнения Шредингера. Уравнение Шредингера необходимо решать в области , в которой

.

Решением этого уравнения является сумма двух плоских монохроматических волн де Бройля (бегущей и отраженной)

.

Стандартные условия в этой задаче записываются следующим образом:

В формулу для волновой функции входит номер квантового состояния , причем значение исключается, так как для значения вероятность найти частицу внутри потенциальной ямы и вне ее будет равна нулю, т.е. частица не существует, а это противоречит условию задачи.

Условие нормировки позволяет найти постоянную

.

В итоге для собственных волновых функций можно записать

(5.13)

Для собственных значений энергии частицы получим:

,

(5.14)

Анализ полученного решения. В классической механике энергетический спектр частицы является непрерывным, минимальное значение энергии равно нулю, т.е. частица может «находиться» на дне потенциальной ямы.

В квантовой механике из формулы (5.14) следует, что энергетический спектр частицы является дискретным и расходящимся, минимальное значение энергии отлично от нуля и равно (рис. 5.6,а)

, . (5.15)

Состояние частицы при квантовом числе , равном единице ( ), называется основным состоянием частицы, а все остальные ее состояния называются возбужденными.

Как видно, выводы классической и квантовой механики при малых значениях квантового числа находятся в резком несоответствии между собой.

Можно показать, что отличие минимального значения энергии частицы от нуля является следствием ее волновых свойств. Действительно, неопределенность координаты частицы в потенциальной яме равна ее ширине , что позволяет из соотношения неопределенностей Гейзенберга провести оценку неопределенности задания импульса частицы . Понятие импульса можно использовать в тех случаях, когда значение импульса будет не меньше погрешности его определения: . Тогда минимальное значение импульса частицы будет равно , что приводит к оценке минимального значения энергии частицы внутри потенциальной ямы



. (5.16)

Полученное из соотношения неопределенностей значение по порядку величины соответствует значению энергии частицы в основном квантовом состоянии ( ), рассчитанному по формуле (5.14).

Обсудим теперь вероятность обнаружения микрочастицы внутри потенциальной ямы.

В классической механике частица движется равномерно по траектории от одной стенки до другой, и поэтому классическая плотность вероятности обнаружения частицы будет одинаковой во всех точках потенциальной ямы, так как частица одинаковое время находится вблизи любой точки.

Запишем формулу для квантовой плотности вероятности обнаружения микрочастицы внутри потенциальной ямы

. (5.17)

Из формулы (5.17) следует, что квантовая плотность вероятности обнаружения микрочастицы внутри потенциальной ямы зависит от координаты и от номера квантового состояния , что не согласуется с движением частицы по траектории. Так, например, для квантового состояния с плотность вероятности на краях потенциальной ямы равна нулю, а в ее середине будет максимальной. Число пиков на зависимости будет равно номеру квантового состояния , а вся площадь под графиками плотности вероятности будет одинаковой и равной единице (рис. 5.6,б).

Вероятность обнаружения частицы в квантовом состоянии внутри потенциальной ямы в области пространства равна площади под графиком соответствующей плотности вероятности и ограниченной по оси абсцисс значениями l1 и l2, а также может быть вычислена по формуле

(5.18)

Итак, движение частицы внутри потенциальной ямы при небольших значениях необходимо описывать в рамках квантовой механики. Однако, при больших значениях квантового числаn возможно применение классической механики при описании движения микрочастицы. Это связано с тем, что при увеличенииn возрастает модуль волнового вектора ( ), следовательно, уменьшается длина волны де Бройля ( ), соответствующая движению частицы, и при некотором значении n будет выполняться условие применимости классической механики для описания движения микрочастицы: << .

Причем для больших nпроисходит относительное сближение энергетических уровней, энергетический спектр становится квазинепрерывным, т.е. дискретным, но дискретностью можно пренебречь по сравнению со значениями энергии квантовых состояний

, .

Большое число максимумов и минимумов на графике зависимости плотности вероятности от координаты (при большом
n) приводит к тому, что усредненное значение < > квантовой плотности вероятности будет совпадать с классическим значением плотности вероятности.

Рассмотренный пример - это пример соответствия выводов квантовой и классической теории при больших значениях квантовых чисел, является частным случаем принципа соответствия, который гласит: при больших значениях квантовых чисел выводы квантовой механики должны соответствовать выводам классической механики.

5.3.2. Туннельный эффект.


Потенциальным барьером называется область пространства, в которой потенциальная энергия частицы больше, чем в соседних областях.

Постановка задачи. Рассмотрим одномерную задачу о движении частиц с энергией W вдоль оси . Частицы из области 1 налетают на прямоугольный потенциальный барьер (область 2) высотой , причем W< (см. рис. 5.7,а). Необходимо ответить на вопрос: что происходит с частицами при их встрече с потенциальным барьером?

В классической механике все частицы для которых W< , отражаются от потенциального барьера и летят обратно. Проникновения частиц в области 2 и 3 (область за барьером) нет.

Решение уравнения Шредингера. В квантовой механике чтобы описать движение микрочастиц, при их встрече с потенциальным барьером, необходимо решить уравнение Шредингера в трех областях (см. рис. 5.7,а) Запишем уравнение Шредингера для каждой из областей и сразу приведем их решения.

Область 1: ,

.

Область 2: , ,

.

Область 3: ,

, .

Из решения уравнения Шредингера для второй области видно, что оно не носит волнового характера (в показатель экспоненты не входит мнимая единица), т.е. решение нельзя представить в виде гармонической функции синуса или косинуса. Это означает, что частица не может находиться в этой области сколь угодно долго, по истечении определенного промежутка времени она должна покинуть эту область пространства. В третьей области пространства отражения нет, поэтому отраженной волны в третьей области не будет.


Рис. 5.7

Полученные в ходе решения уравнения Шредингера для трех областей волновые функции, необходимо «сшить» на границе этих областей, т.е. наложить на волновые функции стандартные условия.

На рис. 5.7,б приведен график зависимости квадрата модуля волновой функции от координаты с учетом стандартных условий (условий сшивания), накладываемых на волновые функции на границах потенциального барьера. Из рис. 5.7,б видно, что вероятность обнаружения микрочастицы внутри потенциального барьера (вторая область) уменьшается с ростом координаты и что вероятность найти микрочастицу в области 3 (область за барьером) будет отлична от нуля.


Анализ полученного решения. При встрече микрочастиц с потенциальным барьером возникает туннельный эффект – явление проникновения частиц сквозь высокий (W< U0) потенциальный барьер. Коэффициент прозрачности D потенциального барьера – величина, определяющая вероятность проникновения частиц сквозь потенциальный барьер и равен отношению интенсивности волны, прошедшей потенциальный барьер, к интенсивности волны, падающей на барьер. Это отношение интенсивностей волн можно найти с учетом условий сшивания, накладываемых на волновую функцию на границах потенциального барьера (см. рис. 5.7)

. (5.19)

Как видно из уравнения (5.19), вероятность прохождения частицы сквозь прямоугольный потенциальный барьер зависит от массы частицы ( ), ширины потенциального барьера ( ) и соотношения между высотой потенциального барьера и полной энергией налетающей на барьер частицы ( ).

В случае потенциального барьера произвольной формы (рис. 5.7,в) для коэффициента прозрачности можно получить следующую формулу:

. (5.20)

При выводе формулы (5.20) область потенциального барьера ≤ r ≤ , в которой полная энергия частицы меньше ее потенциальной энергии (см. рис. 5.7,в), разбивается на совокупность прямоугольных потенциальных барьеров. Для каждого из них находится коэффициент прозрачности (i – номер прямоугольного барьера), затем, для определения коэффициента прозрачности всего барьера, коэффициенты перемножаются. Для увеличения точности расчетов ширина прямоугольных потенциальных барьеров стремится к нулю, а их числоi стремится к бесконечности ( ).

Туннельный эффект объясняет многие наблюдаемые на опыте явления, такие например, как – распад ядер, холодную эмиссию электронов из металла и т.д.

Возникает вопрос: почему классическая частица не может проникать внутрь барьера, а микрочастицы имеют такую возможность? Можно привести следующее объяснение. В классической механике в произвольный момент времени точно известны координата и импульс частицы. Это позволяет точно выделить вклады в полную энергию частицы от ее потенциальной и кинетической энергии - . Поэтому в области потенциального барьера, где полная энергия частицы меньше ее потенциальной энергии, кинетическая энергия частицы будет меньше нуля ( ). Это невозможно согласно определению кинетической энергии.

В квантовой механике, в соответствии с соотношениями неопределенности Гейзенберга, нельзя одновременно точно задать координаты частицы и ее импульс. Поэтому точное деление полной энергии частицы на ее кинетическую и потенциальную энергии невозможно. Это позволяет частице проникать внутрь потенциального барьера на короткое время.