Файл: Тесты с ответами по естествознанию.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 01.01.2020

Просмотров: 26573

Скачиваний: 397

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

РАЗДЕЛ I

Теоретико-концептуальный и естественноисторический

1. Принципы, методы и философские концепции науки и естественнонаучного познания

1.1. Определение науки и естествознания как отрасли науки

1.2. Наука и ненаука. Принципы или критерии научности

1.3. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания

1.4. Методы научного познания

1.5. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса

1.6. Основные этапы развития научной рациональности (науки) - классический, неклассический и постнеклассический

2. Генезис основных концептуальных понятий современного естествознания античными и средневековыми цивилизациями.

2.1. Роль и значение мифов в становлении науки и естествознания

2.2. Античные ближневосточные цивилизации

2.3. Античная Эллада (Древняя Греция)

2.4. Античный Рим

2.5. Античный Китай

2.6. Античная Индия

2.7. Арабское средневековье

2.8. Древняя Месоамерика — естествознание народа майя

2.9. Древние и средневековые Византия и Русь

2.10. Западноевропейское средневековье

2.11. Эпоха Возрождения

3. Концепции и принципы классического физического – механистического и термодинамического естествознания

3.1. Объекты физического познания и структура физических наук

3.2. Концепции предклассического механистического естествознания

3.3. Ньютоновы принципы классического механистического естествознания

3.4. Энергия, теплота, закон сохранения энергии и первое начало (принцип) термодинамики

3.5. Понятие качества энергии, энтропия, второе начало (принцип) термодинамики и принцип минимума производства энтропии

4. Концепции и принципы неклассического - полевого, квантового и квантово-полевого физического естествознания

4.1. Электромагнитное поле фарадея-Максвелла, электромагнитное взаимодействие и принципы специальной теории относительности - теории пространства-времени Эйнштейна и Минковского

4.2. Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения

4.3. Концепции и принципы квантового естествознания

4.4. Квантово-полевой микромир сильного и слабого взаимодействий, принципы квантовой хромодинамики и систематики элементарных частиц

5. Фундаментальные принципы и обобщенные положения современного физического естествознания

5.1. Концепции пространство и время

5.2. Принципы относительности движения — классический, релятивистский и к средствам наблюдения

5.3. Концепции корпускулярности, континуальности и корпускулярно-волнового дуализма

5.4. Концепции симметрии, инвариантности и законы сохранения

5.5. Концепции физического вакуума

5.6. Основополагающие принципы и понятия физического естествознания

5.7. Физическое естествознание как целостная система знаний

6. Космологические и космогонические концепции естествознания о Вселенной

6.1. Вселенная как понятие и объект познания

6.2. Планеты, звезды, галактики и их структуры во Вселенной

6.3. Начало космологии, фридмановские космологические модели, разбегание галактик и расширение Вселенной

6.4. Космогоническая гипотеза Леметра, гипотеза Гамова «горячей сингулярности», «большой взрыв» и ранние эпохи образования Вселенной

6..5. Реликтовое излучение Гамова

6.6. Космологический Горизонт и крупномасштабная (ячеистая) структура Вселенной

7. Естествознание о Земле и планетах Солнечной системы

7.1. Планетная космогония

7.2. Геосферы и эволюция Земли

7.3. Геохронологическая и стратиграфическая шкалы

7.4. Географическая оболочка Земли

8. Концепции и принципы химического естествознания

8.1. Эволюция звезд, происхождение химических элементов и планетная химическая эволюция

8.2. Донаучный этап химии — ремесленная химия и алхимия античности и средневековья

8.3. Главная задача химии и основные этапы ее развития

8.4. Концепции химии об элементах и периодический закон Менделеева химических элементов

8.5. Концепции структуры химических соединений (структурной химии)

8.6. Концепции и законы химических процессов (реакций)

8.7. Концепции и принципы эволюционной химии и самоорганизации эволюционных химических систем

9. Концепции и принципы биологического естествознания

9.1. Объекты биологического познания и структура биологических наук

9.2. Гипотезы возникновения жизни и генетического кода

9.3. Концепции начала и эволюции жизни

9.4. Системная иерархия организации живых организмов и их сообществ

9.5. Экосистемы, экология и взаимоотношения живых существ

9.6. Основные концепции этологии

9.7. Энергетические и энтропийные процессы (энергетика) жизни

10. Концепции и гипотезы естествознания о человеке

10.1. Теическая гипотеза происхождения человека (творение Бога)

10.2. Эволюционные концепции происхождения человека

10.3. Мутационные гипотезы происхождения человека

10.4. Концепции этнологии

10.5. Теория пассионарности Л. Н. Гумилева

10.6. Совместная эволюция человека и биосферы

11. Антропный принцип и мега-история Вселенной

11.1. О понятии мега-истории Вселенной

11.2. Предыстория антропного принципа

11.3. Этапы и процессы панкосмогенеза

11.4. О базовых параметрах Вселенной и Галактики (Млечного Пути)

11.5. Тонкая согласованность физических законов и мировых констант

11.6. Магия (мистика) больших чисел

11.7. Слабая формулировка антропного принципа

11.8. Сильная и сверхсильная формулировки антропного принципа

11.9. О кризисе планетарного цикла мега-истории Вселенной

12. Концепции постнеклассического естествознания и теорий самоорганизации

12.1. Возникновение и становление концепций постнеклассического естествознания

12.2. Динамика возникновения диссипативных структур

12.3. Устойчивость структур и механизм их эволюции

12.4. Механизмы потери устойчивости структур, катастрофы, бифуркации, математическая теория катастроф и прогнозы будущего

12.5. Природные диссипативные структуры (стихии)

12.6. Фракталы, сети и сетевые структуры природы и общества

12.7. Фундаментальные концепции постнеклассического естествознания

12.8. К проблеме постнеклассического межкультурного диалога естественных и гуманитарных наук

13. Математика и естественнонаучная реальность мира

13.1. Математизация как принцип целостности естествознания

13.2. Математика, математическая истина и теория познания

13.3. Непостижимая эффективность математики

Заключение

РАЗДЕЛ II

Список тем рефератов

Темы рефератов «Образы природы античного, раннего (средневековья и эпохи Возрождения) и классического (эпохи Нового времени) естествознания» (1 семестр)

Темы рефератов по разделу «Концепции естествознания Новейшего времени» (2 семестр)

Тематика рефератов «Биографические очерки и творчество великих ученых»

РАЗДЕЛ III. Контрольно-аттестационный

Тесты к главе 1

Принципы, методы, философские концепции науки и естественнонаучного познания

Тесты к главе 2

Генезис основных концептуальных понятий современного естествознания в античных и средневековых цивилизациях

Тесты к главам 3, 4 и 5

Концепции и принципы классического и неклассического физического естествознания

Тесты к главам 6 и 7

Космологические и космогонические концепции и гипотезы естествознания о Вселенной, о Земле и планетах Солнечной системы

Тесты к главе 8

Концепции и принципы химического естествознания

Тесты к главе 9

Концепции и принципы биологического естествознания

Тесты к главам 10 и 11

Концепции естествознания о человеке, антропный принцип и Мега-история Вселенной

Тесты к главе 12

Концепции постнеклассического естествознания и теории самоорганизации

Тесты к главе 13

Математика и естественнонаучная реальность мира

Ключи к тестам

ЛИТЕРАТУРА

Ограниченность проявления симметрий связана с иерархией симметрий. Не анализируя всей сложности возникающих ситуаций, только укажем некоторые из них: при взаимопревращениях микрообъектов сохраняется электрический заряд; при сильных взаимодействиях сохраняется величина, получившая название для барионов (тяжелых частиц) барионный заряд, сами барионы, за исключением сверхстабильного протона, рождаются парами; подобный закон сохранения действует и для лептонов (легких частиц); в ядрах атомов нейтрон и протон оказываются неразличимыми (но только в ядрах), то есть являются как бы одной частицей — нуклоном, эта симметрия имеет особое название — изотопическая инвариантность. Число примеров можно было бы множить, тем более, что вся вторая половина XX века прошла в теоретической физике под знаком господства так называемой калибровочной инвариантности как особого вида симметрии, которым обладает как электромагнитное поле, так и все другие физические поля микромира.

Суть калибровочной инвариантности состоит в том, что взаимодействующие тем или иным образом (электромагнитным, гравитационным, сильным и слабым) частицы переносят это взаимодействие посредством некоторого, в каждом конкретном случае своего, особого поля. Эта особенность взаимодействия оказалась всеобщей и универсальной. В конечном итоге, поиски все новых симметрий «подарили», как мы отмечали, самые «элементарные» из всех частиц — кварки, что послужило основанием появления новой физики микромира, основанной исключительно на симметриях — квантовой хромодинамики.


5.5. Концепции физического вакуума


Обсудим, прежде всего, геометрический аспект проблемы. Мысль о том, что великая пустота (или вакуум) есть источник окружающего нас мира, уходит вглубь веков. Согласно представлениям древних мыслителей Востока (Китая, Индии), все материальные объекты возникают из пустоты, являются ее частью и, в этом смысле, иллюзорны. Вот диалог ученика и учителя о великой пустоте в древнеиндийских «Ведах»: «Ученик спрашивает: — Каков источник этого мира? — Пространство, — ответил учитель. — Поистине все эти существа выходят из пространства и возвращаются в пространство, ибо пространство больше их, пространство — последнее их прибежище». Важное место в натурфилософии древних греков занимало также понятие пустоты, без которой не могло мыслиться движение, но не как источник мира, как в древнеиндийских «Ведах».

Еще до наступления Нового времени итальянский философ Ф. Патрицци писал: «Итак, пространство есть то, что прежде мира и будет после него, что стоит во главе мира, из него исходит и, наконец, обращается в нечто... Разве оно тогда не является субстанцией? Если субстанция то, что лежит в основе, то пространство и есть, скорее всего, сущность».


Мы знаем, изучили ранее, что в классической физике используется понятие абсолютно пустого пространства («вместилища вещей»), которое можно считать синонимом вакуума классической нерелятивистской физики (то есть физики при скоростях объектов, много меньше скорости света). Физика, начало которой положила механика Ньютона, развивалась как теория измерения расстояний и моментов времени объектов (тел), движущихся относительно других материальных объектов (тел.). Полученные в результате измерений множества координат и времени подвергались обработке, чтобы получить траекторию и уравнения движения. Эта связь между геометрией пространства событий и механикой тел была уже замечена Ньютоном, который писал: «Геометрия основывается на механической практике и есть не что иное, как та часть общей механики, в которой излагается и доказывается искусство точного измерения». Таким образом, мы видим, что представления о пространстве и времени с XVII века связываются с экспериментальной проверкой, так же как и интересующее нас здесь понятие вакуума, в отличие от древних мыслителей, не проверявших своих воззрений. Так же, как и евклидова геометрия механики Ньютона, геометрия искривленных пространств, созданная Лобачевским, Гауссом и Больяи (гиперболическая) и Риманом (эллиптическая), в основе своей содержат физический опыт измерений.

В статье «О гипотезах, лежащих в основании геометрии» Риман отмечал: «...Предложения геометрии не выводятся из общих свойств протяженных величин, напротив, те свойства, которые выделяют пространство из других мыслимых, трижды протяженных величин, могут быть почерпнуты не иначе, как из опыта» (и это пишет не физик, а математик!).

Еще большее сближение представлений восточных и европейских ученых мы находим в точке зрения на природу материи английского математика Уильяма Клиффорда, который в философской статье «О пространственной теории материи» прямо говорил, что «в физическом мире не происходит ничего, кроме изменения кривизны пространства, подчиняющегося (возможно) закону непрерывности». По Клиффорду, материя — это сгустки пространства, своеобразные, холмы кривизны на фоне плоского пространства.

Идеи Клиффорда нашли свое развитие в работах Эйнштейна, которому удалось представить гравитационное поле через кривизну пространства-времени. Пустое, но искривленное пространство позволяет получить решения, которые подтверждаются на опыте. Среди них — эффекты смещения перигелия Меркурия, отклонение луча света в гравитационном поле Солнца, запаздывание радиосигналов в гравитационном поле. Эйнштейн безоговорочно верил в правильность выбранного пути: «Я считаю, далее, что уравнения гравитации для пустого пространства представляют собой единственный рациональный обоснованный случай теории поля, который может претендовать на строгость».


Рассмотрим теперь другой — «полевой» аспект физического вакуума, то есть путь, когда вакуумные представления уходят в квантово-полевую область материи или в мир элементарных частиц (микромир). Вакуум — это состояние, в котором реально отсутствуют какие-либо частицы, поля, волны, каком-либо материя (это тривиальное, классическое, обыденное представление о вакууме). В обычных условиях такое состояние обладает минимально возможной энергией. Реализацией такого представления о вакууме является пустое пространство, хотя, на первый взгляд, это бесперспективно. Новое, релятивистское представление о физическом вакууме получил английский физик Поль Дирак, когда рассмотрел поведение электрона в пространстве-времени Эйнштейна — Минковского. Он открыл в результате реальный мир античастиц, который является особым состоянием физического вакуума, ранее считавшегося лишенным какой-либо материи. Поразительным оказалось то, что квантовая физика преподносит «трюки» даже в отсутствии квантовых частиц.

Источник таких «трюков» — принцип неопределенности Гейзенберга. В какие-то очень малые, не фиксируемые приборами промежутки времени, энергия может быть взята «взаймы» на различные цели, в том числе на рождение частиц. Разумеется, все родившиеся частицы будут короткоживущими, так как израсходованная на них энергия должна быть «возвращена» через ничтожную долю времени. Тем не менее, частицы могут возникнуть из «ничего» (вот это и называют «вакуумом» современной физики), обретя мимолетное бытие, прежде чем снова исчезнуть. И эту скоротечную картину невозможно предотвратить. Как бы мы не старались опустошить пространство, в нем всегда будет присутствовать рой частиц, возникновение которых «субсидируется» соотношением Гейзенберга. Эти частицы-призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность «виртуальных частиц», аналогичных переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова возвращаются в нее, являя собой наглядное доказательство существования силового поля и оставаясь при этом бесплотными призраками. Вот, например, российский ученый Дмитрий Блохинцев писал: «Согласно этой точке зрения (детерминистическому подходу. — Авт.)» частицы являются лишь возбуждениями вакуума, который продолжает жить и тогда, когда никаких частиц нет; в нем флуктуирует электромагнитное поле... Это — не покой, а вечное движение, подобно зыби на поверхности моря... С этой точки зрения ясно также, что никаких изолированных, предоставленных самим себе («свободных», как говорят) частиц не существует. Даже в случае значительного удаления частиц друг от друга, они все же продолжают принадлежать породившей их среде, находящейся в состоянии непрерывного движения». Этим эффектом постоянного движения объясняются некоторые особенности поведения электрона в атоме водорода. Существуют и другие проявления этого удивительного свойства физического вакуума, в том числе, реальное рождение электрон-позитронных пар, зарегистрированное на экспериментах.


Еще разнообразнее возможные свойства вакуумного состояния полей при учете слабых, сильных и гравитационных полей. Укажем лишь, что эти свойства непосредственно связаны с такими представлениями современной теоретической физики, как спонтанное нарушение симметрии, асимптотическая свобода (для кварков), «пенная» структуры пространства-времени на малых (план-ковских) расстояниях (предполагаемая в мгновения до начала «большого взрыва»), испарение гравитационных «черных» дыр и др.


5.6. Основополагающие принципы и понятия физического естествознания


В качестве итога изложения концептуальных принципов и понятий физического естествознания, содержащихся в главах 3, 4 и в предыдущих пунктах, можно констатировать существование следующих фундаментальных принципов, представленных ниже с их кратким разъяснением.

1. Принцип относительности — закон, состоящий в том, что любой процесс протекает одинаково в изолированных инерциальных материальных системах, системах, покоящихся либо равномерно прямолинейно движущихся относительно друг друга. Принцип относительности утверждает равноправие всех инерциальных систем отсчета. Особо следует выделять принцип относительности к средствам наблюдения, устанавливающего связь макро- и микромиров.

2. Принцип распространения света — скорость распространения света в вакууме (пустоте) не зависит от скорости источника и является предельной для любых физических скоростей.

3. Принцип суперпозиции в классической физике — утверждение, состоящее в том, что результирующий эффект от независимых воздействий представляет собой линейную сумму эффектов от каждого воздействия в отдельности.

Принцип суперпозиции состояний в квантовой физике — утверждение, состоящее в том, физическая система может находиться как в состояниях, описываемых двумя (или несколькими) волновыми функциями, так и в состояниях, описываемых любой линейной комбинацией этих функций. Принцип суперпозиции можно понимать как принцип линейных независимых наложений воздействий или состояний друг на друга.

4. Принцип корпускулярно-волнового дуализма (принцип волновых свойств материи) — утверждение, заключающееся в том, что любые микрообъекты материи (фотоны, электроны, протоны, атомы, молекулы и др.) обладают свойствами и частиц (корпускул) и волн, количественные связи энергии, массы, импульса и частоты которых определяются соотношениями де Бройля.

5. Принцип неопределенности Гейзенберга — принцип квантовой физики, утверждающий, что характеризующие физическую систему так называемые дополнительные физические величины (координата и импульс, энергия и время и др.) не могут одновременно принимать точные значения и не могут быть потому одновременно точно измерены. Количественная связь неопределенностей (погрешностей) в определении дополнительных величин ограничивается их произведением, равным или превосходящим постоянную Планка.


6. Принцип тождественности частиц (микромира) — положение квантовой физики, согласно которому состояния системы частиц (микрообъектов), получающиеся друг из друга перестановкой местами тождественных (неотличимых) частиц, нельзя различить ни в каком эксперименте, и такие состояния должны приниматься как одно физическое состояние. Из указанного принципа следует симметрия волновой функции системы тождественных частиц.

7. Принцип запрета Паули — закон природы, согласно которому в какой-либо квантовой системе тождественных частиц с полуцелым спином (например, электроны, протоны и др.) две или более частицы не могут одновременно находиться в одном и том же состоянии (именно это запрещено — быть в одинаковом состоянии).

8. Принцип эквивалентности (гравитационной и инертной масс) — закон природы, который устанавливает аналогию между свободным движением тел, наблюдаемым в неинерциальной (ускоренной) системе отсчета, и движением тел в поле тяготения. Принцип утверждает эквивалентность ускоренных систем отсчета некоторому гравитационному полю.

9. Принцип дополнительности Бора — принцип, со гласно которому существуют две взаимоисключающие и дополняющие друг друга импульсно-энергетическая и про

странственно-временная картины состояний микрообъекта, получаемые при взаимодействии его с соответствующими измерительными приборами. Одновременные точные данные о них невозможны.

10. Принцип соответствия Бора — утверждение, состоящее в том, что новая, более глубокая и общая теория, своими следствиями и выводами должна включать в себя старую теорию как предельный случай (например, релятивистская механика Эйнштейна при малых скоростях — классическую механику Ньютона и др.).

11. Принцип калибровочной инвариантности (компенсации) в теории полей — преобразование, задающее переход от одних значений, характеризующих поле величин, к другим, оставляющим без изменения физически определенные, наблюдаемые (измеряемые) на опыте параметры поля. Например, в электродинамике — переход от одних значений электрических потенциалов к другим, оставляющий без изменения значения напряженностей электрического и магнитного полей, плотность их энергии и т. д. Компенсация за такое преобразование сводится к появлению агента, переносящего то или иное свойство микрообъекта в пространстве и времени — например, агента взаимодействия электрических зарядов посредством (или в виде) электромагнитного поля или фотонов. Данный принцип является всеобщим (всеобъемлющим) принципом природы.


Нижеследующие принципы:

12. Принцип спонтанного нарушения симметрии и

13. Принцип перенормируемости являются характерными для мира элементарных частиц и связаны с методами их классификации на унитарной основе и исключения бесконечных величин, возникающих в квантово-полевых теориях.