Файл: Тесты с ответами по естествознанию.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 01.01.2020

Просмотров: 26175

Скачиваний: 394

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Предисловие

РАЗДЕЛ I

Теоретико-концептуальный и естественноисторический

1. Принципы, методы и философские концепции науки и естественнонаучного познания

1.1. Определение науки и естествознания как отрасли науки

1.2. Наука и ненаука. Принципы или критерии научности

1.3. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания

1.4. Методы научного познания

1.5. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса

1.6. Основные этапы развития научной рациональности (науки) - классический, неклассический и постнеклассический

2. Генезис основных концептуальных понятий современного естествознания античными и средневековыми цивилизациями.

2.1. Роль и значение мифов в становлении науки и естествознания

2.2. Античные ближневосточные цивилизации

2.3. Античная Эллада (Древняя Греция)

2.4. Античный Рим

2.5. Античный Китай

2.6. Античная Индия

2.7. Арабское средневековье

2.8. Древняя Месоамерика — естествознание народа майя

2.9. Древние и средневековые Византия и Русь

2.10. Западноевропейское средневековье

2.11. Эпоха Возрождения

3. Концепции и принципы классического физического – механистического и термодинамического естествознания

3.1. Объекты физического познания и структура физических наук

3.2. Концепции предклассического механистического естествознания

3.3. Ньютоновы принципы классического механистического естествознания

3.4. Энергия, теплота, закон сохранения энергии и первое начало (принцип) термодинамики

3.5. Понятие качества энергии, энтропия, второе начало (принцип) термодинамики и принцип минимума производства энтропии

4. Концепции и принципы неклассического - полевого, квантового и квантово-полевого физического естествознания

4.1. Электромагнитное поле фарадея-Максвелла, электромагнитное взаимодействие и принципы специальной теории относительности - теории пространства-времени Эйнштейна и Минковского

4.2. Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения

4.3. Концепции и принципы квантового естествознания

4.4. Квантово-полевой микромир сильного и слабого взаимодействий, принципы квантовой хромодинамики и систематики элементарных частиц

5. Фундаментальные принципы и обобщенные положения современного физического естествознания

5.1. Концепции пространство и время

5.2. Принципы относительности движения — классический, релятивистский и к средствам наблюдения

5.3. Концепции корпускулярности, континуальности и корпускулярно-волнового дуализма

5.4. Концепции симметрии, инвариантности и законы сохранения

5.5. Концепции физического вакуума

5.6. Основополагающие принципы и понятия физического естествознания

5.7. Физическое естествознание как целостная система знаний

6. Космологические и космогонические концепции естествознания о Вселенной

6.1. Вселенная как понятие и объект познания

6.2. Планеты, звезды, галактики и их структуры во Вселенной

6.3. Начало космологии, фридмановские космологические модели, разбегание галактик и расширение Вселенной

6.4. Космогоническая гипотеза Леметра, гипотеза Гамова «горячей сингулярности», «большой взрыв» и ранние эпохи образования Вселенной

6..5. Реликтовое излучение Гамова

6.6. Космологический Горизонт и крупномасштабная (ячеистая) структура Вселенной

7. Естествознание о Земле и планетах Солнечной системы

7.1. Планетная космогония

7.2. Геосферы и эволюция Земли

7.3. Геохронологическая и стратиграфическая шкалы

7.4. Географическая оболочка Земли

8. Концепции и принципы химического естествознания

8.1. Эволюция звезд, происхождение химических элементов и планетная химическая эволюция

8.2. Донаучный этап химии — ремесленная химия и алхимия античности и средневековья

8.3. Главная задача химии и основные этапы ее развития

8.4. Концепции химии об элементах и периодический закон Менделеева химических элементов

8.5. Концепции структуры химических соединений (структурной химии)

8.6. Концепции и законы химических процессов (реакций)

8.7. Концепции и принципы эволюционной химии и самоорганизации эволюционных химических систем

9. Концепции и принципы биологического естествознания

9.1. Объекты биологического познания и структура биологических наук

9.2. Гипотезы возникновения жизни и генетического кода

9.3. Концепции начала и эволюции жизни

9.4. Системная иерархия организации живых организмов и их сообществ

9.5. Экосистемы, экология и взаимоотношения живых существ

9.6. Основные концепции этологии

9.7. Энергетические и энтропийные процессы (энергетика) жизни

10. Концепции и гипотезы естествознания о человеке

10.1. Теическая гипотеза происхождения человека (творение Бога)

10.2. Эволюционные концепции происхождения человека

10.3. Мутационные гипотезы происхождения человека

10.4. Концепции этнологии

10.5. Теория пассионарности Л. Н. Гумилева

10.6. Совместная эволюция человека и биосферы

11. Антропный принцип и мега-история Вселенной

11.1. О понятии мега-истории Вселенной

11.2. Предыстория антропного принципа

11.3. Этапы и процессы панкосмогенеза

11.4. О базовых параметрах Вселенной и Галактики (Млечного Пути)

11.5. Тонкая согласованность физических законов и мировых констант

11.6. Магия (мистика) больших чисел

11.7. Слабая формулировка антропного принципа

11.8. Сильная и сверхсильная формулировки антропного принципа

11.9. О кризисе планетарного цикла мега-истории Вселенной

12. Концепции постнеклассического естествознания и теорий самоорганизации

12.1. Возникновение и становление концепций постнеклассического естествознания

12.2. Динамика возникновения диссипативных структур

12.3. Устойчивость структур и механизм их эволюции

12.4. Механизмы потери устойчивости структур, катастрофы, бифуркации, математическая теория катастроф и прогнозы будущего

12.5. Природные диссипативные структуры (стихии)

12.6. Фракталы, сети и сетевые структуры природы и общества

12.7. Фундаментальные концепции постнеклассического естествознания

12.8. К проблеме постнеклассического межкультурного диалога естественных и гуманитарных наук

13. Математика и естественнонаучная реальность мира

13.1. Математизация как принцип целостности естествознания

13.2. Математика, математическая истина и теория познания

13.3. Непостижимая эффективность математики

Заключение

РАЗДЕЛ II

Список тем рефератов

Темы рефератов «Образы природы античного, раннего (средневековья и эпохи Возрождения) и классического (эпохи Нового времени) естествознания» (1 семестр)

Темы рефератов по разделу «Концепции естествознания Новейшего времени» (2 семестр)

Тематика рефератов «Биографические очерки и творчество великих ученых»

РАЗДЕЛ III. Контрольно-аттестационный

Тесты к главе 1

Принципы, методы, философские концепции науки и естественнонаучного познания

Тесты к главе 2

Генезис основных концептуальных понятий современного естествознания в античных и средневековых цивилизациях

Тесты к главам 3, 4 и 5

Концепции и принципы классического и неклассического физического естествознания

Тесты к главам 6 и 7

Космологические и космогонические концепции и гипотезы естествознания о Вселенной, о Земле и планетах Солнечной системы

Тесты к главе 8

Концепции и принципы химического естествознания

Тесты к главе 9

Концепции и принципы биологического естествознания

Тесты к главам 10 и 11

Концепции естествознания о человеке, антропный принцип и Мега-история Вселенной

Тесты к главе 12

Концепции постнеклассического естествознания и теории самоорганизации

Тесты к главе 13

Математика и естественнонаучная реальность мира

Ключи к тестам

ЛИТЕРАТУРА

Математической сущности природы придерживались и великий открыватель законов космоса Иоганн Кеплер и основатель экспериментальной европейской науки итальянский гений Галилео Галилей, когда он писал, как завещание, в 600-страничной книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению»: «Философия написана в величайшей книге, которая постоянно открыта нашим глазам (я говорю о Вселенной); но нельзя ее понять, не научившись прежде понимать ее язык и различать знаки, которыми она написана. Написана же она языком математическим».

С давних времен люди почитали и по сию пору, почитают так называемое «золотое сечение», оно же «золотая пропорция», «золотое деление» (его изложение есть в «Началах» Евклида), которое приближенно (с возрастающей точностью) выражается через отношения ряда чисел Фибоначчи 5/3, 8/5, 13/8, 21/13 и т. д., т. е. ряда чисел, открытого итальянским математиком Фибоначчи (его имя Леонардо Пизанский) в 1202 году (!), ряда, в котором каждый последующий член равен сумме двух предыдущих — 1, 1, 2, 3, 5, 8, 13, 21, .... В пределе число золотой пропорции иррационально - 1,6280338.... Сейчас стало ясно, что восхищались этим числом не безосновательно. В 1957 году американский математик Бергман показал, что это число 1,6280338... может быть эффективным основанием компьютерных вычислений, превосходящим по эффективности принятую в настоящее время двоичную систему счисления. Возможно, что когда-нибудь это найдет применение. Термин золотое сечение ввел Леонардо да Винчи, некоторые авторы называли эту пропорцию божественной.

В Новейшее время комбинаторикой чисел занимался открыватель квантов немецкий физик Макс Планк, а, в связи с проблемами космологии, великий английский физик Поль Дирак. Это ему принадлежит открытие новых безразмерных постоянных, численно приблизительно выражающихся единицей, либо с тридцати девятью, либо с сорока нулями — 1039 — 1040 Дирак писал в одной из статей: «Как и другие безразмерные физические постоянные, это число (составленное из квадрата электрического заряда, масс электрона и протона и гравитационной постоянной. — Авт.) должно быть объяснено. Можно ли хотя бы надеяться придумать теорию, которая объяснит такое огромное число? Его нельзя разумно построить, например, из 4x и других простых чисел, которыми оперирует математика! Единственная возможность объяснить это число — связать его с возрастом Вселенной». Вот так закладывается современная магия, магия больших чисел. Через эту магию и П. Дирак, Р. Дикке и др. пытаются дать научное обоснование антропного принципа, но не как физического принципа, а какого-то более общего, еще более фундаментального, чем любой физический принцип. Класс принципа, к которому должен быть отнесен антропный принцип, таким образом, не ясен. Но это вовсе не значит, что эта проблема не должна исследоваться ни естественными науками, ни философией. Это вызов и философии и естествознанию, вызов всей науке, всей цивилизации. Возможно, что решение этой проблемы выведет человечество на новый виток познания, создаст принципиально новую науку.







11.7. Слабая формулировка антропного принципа


Рассмотренные выше закономерности Вселенной и предпосылки возникновения в ней жизни можно свести к единому принципу, называемому антропным принципом.

Сейчас различают три варианта формулировок принципа: слабую, сильную и сверхсильную. Кратко в слабой формулировке он гласит: физическая Вселенная, которую мы наблюдаем, представляет собой структуру, допускающую нагие присутствие как наблюдателей. Расширенно и подробно эту формулировку раскрыли американские физики Берроу и Типлер (последнему, кстати, принадлежит одно из новых нетривиальных определений жизни «как информации»). Их формулировка слабого варианта антропного принципа такова: «Наблюдаемые значения всех физических и космических величин не произвольны. Они в значительной мере принимают значения, которые ограничены требованием наличия региона, в котором могла возникнуть жизнь на базе углерода, и требованием к возрасту Вселенной, достаточным для того, чтобы это уже произошло». В какой-то степени приведенные формулировки представляется тавтологией, вроде этой: наблюдатель наблюдает Вселенную, допускающую наблюдение. Есть ли в этом какой-то смысл? Вроде бы и есть, и даже не совсем простой.

Во-первых, слабый вариант принципа напоминает о том, что в теориях надо учитывать наблюдателя. В классической науке, благодаря картезианско-ныотоновской формулировке, наблюдателю места нет, а вот в неклассической (через посредство принципа относительности к средствам наблюдения) и в постнеклассической науке (синергетике Германа Хакена, теории диссипативных структур Ильи Пригожина, теории автопоэза Матураны — Варелы и др.) наблюдатель уже учитывается. В таком случае принцип играет роль «фильтра» для отбора теорий, причем фильтра чрезвычайной плотности, из-за отмечавшейся выше тонкой согласованности законов и констант.

Во-вторых, слабый вариант принципа обращает внимание на то, что возможности для жизни тесно связаны с законами природы и с общекосмическим (вселенским) развитием (космогенезом), и их не следует воспринимать и рассматривать независимо друг от друга. Если, как оказалось, жизнь все же возникла, то, может быть, она была изначально преднамеренна, заранее запланирована? Но тогда мы вправе задать вопрос: Кто или Что за всем этим стоит? Пока мы не будем пытаться дать ответ на этот естественный вопрос.

В-третьих, слабый вариант принципа указывает на случайное появление наблюдающего разума, отрицает жесткий классический детерминизм необходимости в произошедшем, в случившемся в этом мире. Это представляется как-будто наиболее естественным, но вряд ли научным, так как мы знаем сейчас почти безграничные возможности науки, и был бы грех все списать на счастливый случай.

Анализируя этот вариант антропного принципа, академик Никита Моисеев сформулировал ряд постулатов. Эти постулаты таковы (выделены курсивом):


1. Вселенная представляет собой единую саморазвивающуюся систему. По нашему убеждению, Вселенная столь стара, что «забыла» о своем начале, а поэтому никак не может быть единой, представляя собой, скорее, несвязанное, несчетное множество метагалактик, в одной из которых нам привелось жить.

2. Во всех процессах, имеющих место во Вселенной, неизбежно присутствуют случайные факторы, влияющие на их развитие. В обзорной статье Дмитрия Чернав-ского о проблеме возникновения жизни, показывается безнадежность случайных факторов для возникновения не то что самой жизни, а даже элементов жизни (ДНК, РНК и т. д.) за какое-либо разумное время, превосходящее время существования нашей метагалактики на 100, 1000 и более порядков.

3. Во Вселенной властвует наследственность.

4. В мире властвуют законы, являющиеся принципами отбора. Весьма сомнительное утверждение, практически неподтверждение так называемой эволюцией жизни по Дарвину. В противовес этому можно найти определение, относящееся к понятию информация в науках о живой природе, данное Г. Кастлером: «Информация есть запомненный выбор одного варианта из нескольких возможных и равноправных». В проблемах жизни и антропного принципа речь должна идти не об отборе, а о выборе. 5. Принципы отбора допускают существование бифуркационных состояний, в которых дальнейшая эволюция оказывается принципиально непредсказуемой. О роли отбора сказано только что выше, а вот о бифуркационных состояниях и последующей непредсказуемости можно сказать следующее. Каждая новая грандиозная проблема в науке вызывала к жизни новую математику. Так было с исчислением бесконечно малых Ньютона и Лейбница в механике, с векторным анализом и теорией поля в электродинамике Максвелла, с римановой геометрией для теории тяготения Эйнштейна, с теорией бесконечномерных пространств Гильберта для квантовой механики, теорией групп Эвариста Галуа и Софуса Ли для унитарных теорий физики элементарных частиц; примеры можно множить. Проблема антропного принципа непременно потребует, уже требует новой математики, в которой должна будет отразиться безмерная неопределенность выбора (полифуркационность) в каждом состоянии, в каком оказывается весь совокупный мир. Но есть и другая точка зрения — вообще отказаться от математики, что породит новую философию науки. Эта точка зрения, скорее, мечта, была высказана как-то выдающимся американским физиком-теоретиком Ричардом Фейнманом в одной из аспирантских аудиторий: «Меня всегда беспокоило, что, согласно физическим законам, как мы понимаем их сегодня, требуется бесконечное число логических операций в вычислительной машине, чтобы определить, какие процессы происходят в сколь угодно малой области пространства за сколь угодно малый промежуток времени. Как может все это уложиться в крохотном пространстве?


Почему необходима бесконечная работа логики для понимания того, что произойдет на крохотном участке пространства-времени? Поэтому я часто высказывал предположение, что в конце концов физика не будет требовать математической формулировки. Ее механизм раскроется перед нами, и законы станут простыми, как шахматная доска, при всей ее видимой сложности». Последний вариант, вариант отказа от использования математики в познании мира, был бы для многих весьма предпочтителен. Но он требует глубинного понимания происходящих явлений в этом мире, понимания на уровне не раскрытого пока антропного принципа.


11.8. Сильная и сверхсильная формулировки антропного принципа


В слабой формулировке нет ответа на вопрос: почему порождается наблюдатель? Это декларируется как необходимое свойство Вселенной в сильной формулировке принципа, например, так; законы построения Вселенной должны быть таковы, что она непременно когда-нибудь должна породить наблюдателя.

Жизнь, в таком варианте сильного принципа, является целью Вселенной; здесь мы имеем дело с телеологическим высказыванием (берущим свое начало от Аристотеля). Такое утверждение логически возможно, но оно не вскрывает причину (каузальность) наблюдаемой жизни. Наблюдаемая вьявь, т. е. жизнь, всего лишь постулируется. Более того, телеологическая модель объяснения мира принципиально неопровержима, что, в соответствии с критерием фальсифицируемости знания по Карлу Попперу, делает данное утверждение ненаучным. Или, если сам сильный вариант принципа справедлив, то на него не следует распространять указанный критерий научности, полагая, что на подобного сорта проблемы (проблемы Бога и его творений) мы и посягать не вправе.

Решение предлагается в сверхсильной формулировке антропного принципа. Она постулирует известное равенство между человеком и Богом, но не превосходство Бога над этим миром и человеком. Ни одна из упомянутых сторон не может существовать без другой. Но если положение о зависимости человека от Природы банально, то обратная гипотеза о зависимости Природы от человека пока еще достаточно нетривиальна.

Как нетрудно догадаться, сильный принцип прямо и без всяких обиняков призывает нас признать библейский миф о сотворении мира де-юре и де-факто. Слабый вариант принципа также по существу «снимает шляпу» перед креационизмом, хотя и пытается это скрыть. Парадокс состоит в том, что кто-то — либо надприродный Бог, либо Природный человек, но скорее они вместе, — обязаны поддерживать бытие мира.

Два предрассудка унаследованы ученым миром (а через него и всеми остальными просвещенными людьми) от эпохи классического естествознания и формальной логики. Во-первых, мы все приучены противопоставлять случайное закономерному, будто первое, в отличие от второго, неконтролируемо, непредсказуемо, деструктивно. Во-вторых, мы привыкли противопоставлять природным явлениям феномены искусственного происхождения, относить результаты культурного (в широком смысле) творчества к категории, фактически, противоестественного. Выдающийся немецкий физик и философ Вернер Гейзен-берг по этому поводу выразился так: «Естественнонаучному духу вполне отвечает ...тенденция рассматривать природу независимо не только от Бога, но и от человека». Вот это в человеческом духе надо стремиться преодолевать и преодолеть-таки, внедряя новое содержание образования, в том числе через преподавание основ современного естествознания, истории и философии науки. Ранее мы уже упоминали о большом вреде инертности мышления, и об этом надо неустанно напоминать.


Надо помнить, мы не вправе забывать никогда, что Вселенная держится на плечах человека. Вот это, пожалуй, пока самый главный итог попыток обоснования, понимания и толкования антропного принципа, итог скорее философский, чем естественнонаучный.


11.9. О кризисе планетарного цикла мега-истории Вселенной


Современная цивилизация находится на пороге тяжелейшего кризиса. Приближающееся явление можно назвать комплексным или системным кризисом. Среди многих возможных его причин следует отметить чрезвычайное усиление антропогенного давления на окружающую среду. Согласно синергетической модели мега-истории, развитие земной цивилизации на протяжении сотен тысяч лет двигалось от кризиса к кризису. Качественные закономерности во временной последовательности этих кризисов (революций) были вскрыты в работах отечественных ученых И. М. Дьяконова и С. П. Капицы. Существенная качественная особенность надвигающегося кризиса становится явной, если рассмотреть всю совокупность революций, которые на своем пути преодолело человечество. Хорошо известно, что во всей предшествующей истории длительности исторических эпох постоянно сокращались. Это явление известно как эффект ускорения исторического времени. Более того, промежутки времени между революциями сокращались закономерным образом, и эта закономерность была раскрыта.

В 2003 году русскому физику из Московского университета А. Д. Панову удалось установить количественные закономерности в последовательности качественных скачков (революций, бифуркаций, цивилизационных переходов) эволюции природы и общества на протяжении многих миллиардов лет! Панов установил автомоделъность (самоподобие, фундаментальный признак фракталънос-ти) последовательности точек революций, которая означает, что промежутки времени между точками сокращаются (историческое время ускоряется) в постоянной пропорции (подобно галилееву постоянному ускорению падающих тел), и что эта последовательность устроена везде одинаково, только абсолютный масштаб времени разный, последовательность же сама себя повторяет. Истинная историческая кривая последовательности революционных моментов, отражающая указанную автомодельность, имеет параболический (степенной) характер. Это чрезвычайно важно с позиций фрактальности, т. е. с позиций постнеклассической науки, и вот почему. Всякая геометрия, фрактальная в том числе, согласно «Эрлангенской программе» выдающегося немецкого математика Феликса Клейна, занимается изучением таких свойств объектов, которые инвариантны относительно определенных преобразований: евклидова геометрия — относительности группы движения (трансляций или сдвигов и вращений), геометрия Минковского — относительно группы Лоренца, а вот фрактальная геометрия занимается изучением инвариантов группы самоаффинных (самоподобных) преобразований, т. е. свойств, выражаемых степенными законами! Вот тогда-то и получается, что исторические события тоже имеют степенной закон и фрактальный характер!