ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 01.01.2020
Просмотров: 26584
Скачиваний: 397
СОДЕРЖАНИЕ
Теоретико-концептуальный и естественноисторический
1. Принципы, методы и философские концепции науки и естественнонаучного познания
1.1. Определение науки и естествознания как отрасли науки
1.2. Наука и ненаука. Принципы или критерии научности
1.3. Структура, эмпирический и теоретический уровни и цель естественнонаучного познания
1.5. Философия науки и динамика научного познания в концепциях К. Поппера, Т. Куна и И. Лакатоса
2.1. Роль и значение мифов в становлении науки и естествознания
2.2. Античные ближневосточные цивилизации
2.3. Античная Эллада (Древняя Греция)
2.8. Древняя Месоамерика — естествознание народа майя
2.9. Древние и средневековые Византия и Русь
2.10. Западноевропейское средневековье
3.1. Объекты физического познания и структура физических наук
3.2. Концепции предклассического механистического естествознания
3.3. Ньютоновы принципы классического механистического естествознания
3.4. Энергия, теплота, закон сохранения энергии и первое начало (принцип) термодинамики
4.3. Концепции и принципы квантового естествознания
5. Фундаментальные принципы и обобщенные положения современного физического естествознания
5.1. Концепции пространство и время
5.2. Принципы относительности движения — классический, релятивистский и к средствам наблюдения
5.3. Концепции корпускулярности, континуальности и корпускулярно-волнового дуализма
5.4. Концепции симметрии, инвариантности и законы сохранения
5.5. Концепции физического вакуума
5.6. Основополагающие принципы и понятия физического естествознания
5.7. Физическое естествознание как целостная система знаний
6. Космологические и космогонические концепции естествознания о Вселенной
6.1. Вселенная как понятие и объект познания
6.2. Планеты, звезды, галактики и их структуры во Вселенной
6..5. Реликтовое излучение Гамова
6.6. Космологический Горизонт и крупномасштабная (ячеистая) структура Вселенной
7. Естествознание о Земле и планетах Солнечной системы
7.2. Геосферы и эволюция Земли
7.3. Геохронологическая и стратиграфическая шкалы
7.4. Географическая оболочка Земли
8. Концепции и принципы химического естествознания
8.1. Эволюция звезд, происхождение химических элементов и планетная химическая эволюция
8.2. Донаучный этап химии — ремесленная химия и алхимия античности и средневековья
8.3. Главная задача химии и основные этапы ее развития
8.4. Концепции химии об элементах и периодический закон Менделеева химических элементов
8.5. Концепции структуры химических соединений (структурной химии)
8.6. Концепции и законы химических процессов (реакций)
8.7. Концепции и принципы эволюционной химии и самоорганизации эволюционных химических систем
9. Концепции и принципы биологического естествознания
9.1. Объекты биологического познания и структура биологических наук
9.2. Гипотезы возникновения жизни и генетического кода
9.3. Концепции начала и эволюции жизни
9.4. Системная иерархия организации живых организмов и их сообществ
9.5. Экосистемы, экология и взаимоотношения живых существ
9.6. Основные концепции этологии
9.7. Энергетические и энтропийные процессы (энергетика) жизни
10. Концепции и гипотезы естествознания о человеке
10.1. Теическая гипотеза происхождения человека (творение Бога)
10.2. Эволюционные концепции происхождения человека
10.3. Мутационные гипотезы происхождения человека
10.5. Теория пассионарности Л. Н. Гумилева
10.6. Совместная эволюция человека и биосферы
11. Антропный принцип и мега-история Вселенной
11.1. О понятии мега-истории Вселенной
11.2. Предыстория антропного принципа
11.3. Этапы и процессы панкосмогенеза
11.4. О базовых параметрах Вселенной и Галактики (Млечного Пути)
11.5. Тонкая согласованность физических законов и мировых констант
11.6. Магия (мистика) больших чисел
11.7. Слабая формулировка антропного принципа
11.8. Сильная и сверхсильная формулировки антропного принципа
11.9. О кризисе планетарного цикла мега-истории Вселенной
12. Концепции постнеклассического естествознания и теорий самоорганизации
12.1. Возникновение и становление концепций постнеклассического естествознания
12.2. Динамика возникновения диссипативных структур
12.3. Устойчивость структур и механизм их эволюции
12.5. Природные диссипативные структуры (стихии)
12.6. Фракталы, сети и сетевые структуры природы и общества
12.7. Фундаментальные концепции постнеклассического естествознания
12.8. К проблеме постнеклассического межкультурного диалога естественных и гуманитарных наук
13. Математика и естественнонаучная реальность мира
13.1. Математизация как принцип целостности естествознания
13.2. Математика, математическая истина и теория познания
13.3. Непостижимая эффективность математики
Темы рефератов по разделу «Концепции естествознания Новейшего времени» (2 семестр)
Тематика рефератов «Биографические очерки и творчество великих ученых»
РАЗДЕЛ III. Контрольно-аттестационный
Принципы, методы, философские концепции науки и естественнонаучного познания
Концепции и принципы классического и неклассического физического естествознания
Концепции и принципы химического естествознания
Концепции и принципы биологического естествознания
Концепции естествознания о человеке, антропный принцип и Мега-история Вселенной
Концепции постнеклассического естествознания и теории самоорганизации
Термодинамические принципы:
14. Первый принцип (первое начало) термодинамики,
15. Второй принцип (второе начало) термодинамики,
16. Третий принцип (третье начало) термодинамики,
17. Принцип минимума производства энтропии в достаточной полноте истолкованы нами в заключительной части данного пункта, тогда как основанный на них
18. Принцип необратимости (движения и времени) в естествознании еще только начинает формироваться и не имеет общепринятого толкования и осмысления.
Представленные выше фундаментальные принципы позволяют сформулировать основные выводы о физической природе материального мира частиц, полей и их систем. Ниже, в виде обобщающих положений, они приведены с указанием имен ученых, внесших определяющий вклад в их творение и осмысление.
Физика частиц и полей
1. Макромир состоит из дискретных и континуальных объектов — частиц и полей (волн) (Демокрит, Зенон Элей-ский, Дальтон, Фарадей, Максвелл).
2. Движение объектов относительно и сохраняется в отсутствие взаимодействий. Состояния покоя и равномерного прямолинейного движения неразличимы никакими физическими опытами (Галилей, Ньютон, Лоренц, Пуанкаре, Эйнштейн, Нетер).
3. Поля (свет, гравитация, в том числе) распространяются с постоянной предельной скоростью (Майкельсон, Морли, Эйнштейн), объединяя в единое многообразие пространство и время — в пространство-время (Минковский).
4. Корпускулярная (дискретная) и континуальная (полевая) форма материи в микромире дуально едина (де Бройль, Шредингер, Дирак), калибровочно-инвариантна (Лоренц, Янг, Миллс), имея проявлением неустранимую неопределенность их пространственно-временных и им-пульсно-энергетических состояний (Гейзенберг) и взаимопревращений друг в друга.
5. Разнообразные свойства всех микрообъектов кванто-ванно минимизированы — электрический заряд (Милликен), спин (Гаудсмит, Уленбек), магнитный момент (Бор), изос-пин (Гейзенберг), странность (Гелл-Манн), барионный заряд, аромат, цвет — и переносятся, передаются от одного к другому связывающими их агентами — фотонами, мезонами, векторными бозонами, глюонами (Планк, Эйнштейн, Тамм, Иваненко, Ферми, Юкава, Янг, Миллс, Гелл-Манн, Цвейг, Боголюбов, Матвеев, Фадеев, Салам, Вайнберг).
6. Искривленное пространство-время макро- и мегамиров (Клиффорд, Лобачевский, Риман) создано материей (Эйнштейн) и простирается (распространяется), расширяясь (Фридман, Хаббл), от предельно плоских (Евклид) локальных областей к предельно искривленным областям — черным дырам (Лаплас, Оппенгеймер, Снайдер, Пенроуз, Хокинг).
Физика термодинамических систем
1. а) внутренняя энергия систем в основном зависит от температуры и может совершать работу (Карно, Майер, Джоуль, Ленд, Гельмгольц) либо б) работа систем возможна за счет понижения температуры.
2. а) мера неупорядоченности (хаоса) системы, энтропия, остается неизменной только для обратимых процессов, возрастая при всех остальных (Клаузиус, Больцман) либо б) мера хаоса (энтропия) в системе нарастает в результате обмена с внешней средой, порождая необратимость движения и времени.
3. а) энтропия систем стремится к нулю при стремлении к нулю абсолютной температуры (Нернст) либо б) наивысший порядок в системе может быть достигнут при абсолютном нуле температуры.
4. Производство энтропии системой минимально в стационарном состоянии (Пригожин).
5.7. Физическое естествознание как целостная система знаний
Со времени Галилея и по настоящее время, физика, как правило, строится и излагается индуктивно, т. е. из огромного множества наблюдений и опытных фактов выбирается некоторое число свойств, их наиболее полно характеризующих, и вырабатываются основные понятия, в терминах которых формулируется физическая теория. Так, например, в физике Ньютона возник универсальный математический язык, получивший название гамильтонов формализм. На его основе были построены теория электромагнитного поля, общая теория относительности или теория гравитации Эйнштейна. Другими математическими средствами (на основе лагранжева формализма) и на другой физической основе, но также индуктивно, была обнаружена единая структура слабых и электромагнитных взаимодействий — электрослабое взаимодействие Вайнберга-Салама-Глэшоу.
Другой возможный путь построения физических теорий — дедуктивный, получивший в работах русского физика Ю. И. Кулакова и коллег название «теория физических структур».
Как известно, Н. Бурбаки (широко известный псевдоним знаменитой группы французских математиков) предложили программу построения математики как целостной системы знаний. Ими было показано, что в основании математики лежат три независимые порождающие структуры — алгебраическая, топологическая и структура порядка. Аналогичная проблема «бурбакизации» может быть поставлена и в физике. Смысл ее состоит в том, чтобы свести все многообразие фундаментальных физических величин, понятий и законов к одной универсальной физической структуре, раскрывающей скрытые симметрии мира физических объектов.
Физика была построена как сложная иерархическая система фундаментальных физических величин, понятий, законов, основных уравнений, общефизических принципов и т. п. Главные достижения физики мы видели всегда в уравнениях соответствующих ее разделов: в механике — уравнения Ньютона, в гидродинамике — уравнения Эйлера и Навье-Стокса, в электродинамике — Максвелла, в теории пространства-времени и тяготения — Эйнштейна, в квантовой механике — Щредингера и Дирака и т. д. Однако, сводя содержание различных разделов физики к соответствующим уравнениям, мы, сами того не замечая, рискуем лишить физику ее подлинного содержания. Главное содержание физики, как теперь выясняется, как было совсем недавно замечено Ю. Кулаковым, необходимо искать не на уровне уравнений, а на другом, высшем уровне, порождаемом особыми видами симметрий систем физических объектов.
Так, например, развитие теории элементарных частиц (физики высоких энергий) в последние 45 лет (с 1961 г.) обратило, в известном смысле, соотношение между уравнениями движения и группами симметрии. Теперь симметрия выступает на передний план как несущая самую фундаментальную информацию о системе. Таким образом, симметрия оказывается первичным, наиболее глубоким инструментом для физического описания природы.
В физике сегодня поставлен вопрос, который был задан Н. Бурбаки по отношению к математике: «Является ли это обширное разрастание развитием крепко сложенного организма, который с каждым днем приобретает все больше и больше согласованности и единства между своими вновь возникающими частями, или, напротив, оно является только внешним признаком тенденции к идущему все дальше и дальше распаду, обусловленному самой природой математики... Одним словом, существует в настоящее время одна математика или несколько математик?» Этот вопрос вправе может быть задан и физике.
6. Космологические и космогонические концепции естествознания о Вселенной
6.1. Вселенная как понятие и объект познания
Хотелось бы прежде обратиться к понятию «Вселенная». Уже отмечалось, что это и «универсум», и место «вселения» человека. В английском языке слово «Вселенная» (Universe) имеет ту же этимологию, что и «единство» (unity) или «единица» (one). Буквально оно означает единство, общность всех вещей, рассматриваемых как целое. Любопытно, что слово «целый» (whole) имеет один корень со словом «святой» (holy), что отражает, как пишет об этом один из самых известных современных популязаторов науки англичанин Поль Девис, глубоко таинственные и метафизические связи, с которыми имеет дело космология. Вплоть до XX века познание Вселенной как целого было прерогативой религии.
Многие ранние традиции, религии (иудейская, христианская и исламская) считали, что Вселенная создалась довольно недавно. Например, в 1658 г. архиепископ Джеймс Ушер из Англиканской церкви вычислил, что 8 часов утра 22 октября 4004 г. до н. э. — точная дата создания Вселенной. Он пришел к этой дате, складывая возраст людей и событий, упомянутых в Ветхом Завете (времена правления царей, период от Исхода евреев из Египта до посвящения храма Соломона, времена патриархов, рожденных до и после Великого потопа). Отцы и теологи Греческой православной церкви относят эту дату к 5508 г. до нашей эры. В таком случае две последние даты библейского создания Вселенной не так далеки от даты конца последнего ледникового периода, когда появился первый современный человек. Первые сомнения в этих датах были научно обоснованы в 1785 г. шотландским натуралистом Джеймсом Хаттоном в книге «Теория Земли» и в 30-х гг. XIX в. выдающимся английским геологом Чарльзом Лайелем (почитавшимся самим Чарлзом Дарвиным) в трехтомном трактате «Принципы геологии» (с этого времени, кстати, ведется отсчет существования самой геологии).
С другой стороны, Гераклит, Аристотель, Декарт, Галилей, Ньютон не признавали идею о том, что Вселенная имела начало. Они чувствовали, что это могло бы иметь место и время, но полагали, что Вселенная существовала всегда и будет существовать всегда, т. е. вечно и бесконечно. Иначе думал великий немецкий философ и космолог Иммануил Кант (автор первой в истории небулярной, т. е. из туманности, гипотезы образования Солнечной системы), когда говорил, что существуют два одинаково правильных довода, оба принимаемых на веру: один, что Вселенная имела начало, и другой, что его не было. И доводы эти основываются не на наблюдениях Вселенной, поскольку она, по существу, не меняющаяся во времени, вряд ли представляет интерес для наблюдений. Таким образом, перед учеными вставала проблема выбора между верой в Бога и материальной верой.
Эти и прочие банальные рассуждения о Вселенной оттеснили на второй план, пожалуй, самый сакраментальный вопрос космологии — имеет ли понятие Вселенной вообще смысл? Можно ли рассматривать все сущее как некое единое целое? На этот глубокий философский и натурфилософский вопрос может быть дан только экспериментальный ответ, который впервые был получен при наблюдении падения тел с Пизанской башни Г. Галилеем (это скорее легенда, но красивая легенда), в конкретных земных условиях, в весьма ограниченной области пространства. Повторить опыты Галилея где-либо еще во Вселенной нам вряд ли удастся (по крайней мере, в ближайшем будущем). Отсюда возникает весьма принципиальный вопрос: насколько применимы научные выводы к Вселенной как целому?
На практике в космологии прибегают к экстраполяции, т. е. к перенесению законов, выведенных из наблюдений, экспериментов и обобщений над отдельными частями Вселенной, за пределы этих частей, перенесению их ко всей Вселенной в целом. Почему мы уверены в правильности такой экстраполяции?
Универсальность физических систем вселяет в нас эту уверенность. Действительно, мы убеждаемся из наблюдений, что звезды очень похожи на наше Солнце, другие галактики напоминают нам нашу Галактику (Млечный Путь) как по размерам, так и по структуре, хотя, конечно, не все галактики оказываются спиральными, как наша Галактика. Удаленные от нас космические объекты состоят из тех же атомов, что и наша планета Земля и Солнечная система; совершенно неотличимы друг от друга атомы в любой части Вселенной. Астрофизики полагают, что процессы в самых удаленных областях космоса и в ближнем космосе идентичны, а происходящие взаимодействия универсальны, что подтверждается экспериментально, по спектрам, например, электромагнитных волн в оптическом, рентгеновском, гамма-диапазоне и диапазоне радиоволн.
Проникая в космос все дальше и дальше (на начало XXI века — до расстояний в 13,7 млрд световых лет, почти до Космологического Горизонта), мы видим практически одно и то же, с небольшими отклонениями. Можно согласиться с тем, что это и странно и не так уж ясно. Еще с античных времен люди считали, что Земля — центр мироздания (и все религии с этим охотно соглашались), уникальный по своему местоположению и форме. Эти представления разрушили поляк Николай Коперник и итальянец Джордано Бруно: Земля — типичная планета в типичной галактике, расположенная в типичной области Вселенной, и, вообще, Вселенная состоит из огромного числа более или менее типичных областей или структур космоса (о них речь пойдет в п. 6.2).
Самый важный «космологический принцип» состоит в том, что ближний космос — типичный образец Вселенной в целом, так что фундаментальной чертой Вселенной является одинаковость ее областей и направлений. Современная астрофизика и космология дают нам картину однородной, изотропной, самосогласованной и регулярной в больших масштабах Вселенной. Вот эти указанные обстоятельства, эти особенности и позволяют расценивать Вселенную как единое целое.
6.2. Планеты, звезды, галактики и их структуры во Вселенной
Как же выглядит Вселенная в настоящий момент? Практически все видимое вещество заключено в галактиках — гравитационно связанных звездных системах размерами в десятки и сотни тысяч световых лет (5-50 кпк, где кпк — килопарсек, парсек равен около 3,26 световых года или 1013 км), содержащих от 106 до 1013 звезд (в среднем около 100 млрд звезд), а также облака газа и пыли. Современной астрономии доступно для изучения более 10 млрд галактик. Галактики объединяются в группы галактик (с числом менее 100 галактик), скопления и сверхскопления. Встречаются также одиночные, двойные и кратные галактики. Средние расстояния между галактиками в группах (например, наша Галактика находится в Местной группе галактик) и в скоплениях составляют 100-500 кпк, что в 10-20 раз больше размеров крупнейших галактик. Расстояния между одиночными, кратными системами и группами галактик составляют 1-2 Мпк (Мпк — мегапарсек). Таким образом, галактики заполняют внут-ригалактическое пространство с большей относительной плотностью, чем звезды, так как расстояния между звездами в среднем в 20 миллионов раз больше их диаметров.
Сверскопления или суперкомплексы галактик — крупнейшие неоднородности во Вселенной, расположенные обычно в узлах ее ячеистой крупномасштабной структуры, в которых сходятся по несколько цепочек сверхскоплений галактик. Их размер может достигать порядка десятков-сотни миллионов световых лет (15-80 Мпк). В масштабах многих сотен миллионов и миллиардов световых лет Вселенная ячеисто-однородна. Средние расстояния между сверхскоплениями составляют сотни мегапарсек; на сегодняшний день известно около 50 сверхскоплений. Местное сверхскопление, в которое входит и наша Галактика, имеет размер около 60 Мпк и содержит около двадцати тысяч галактик (исключая карликовые). Следующий структурный элемент галактик — скопления галактик, плотные супергалактические образования, в которых выделяют, помимо собственно галактик, еще диффузную компоненту — горячий ионизированный газ и невидимое вещество (вещество ли?), или так называемую скрытую массу. Размеры скоплений галактик — от 1,5 до 3 Мпк — отвечают размерам первичных неоднородностей, способных эволюционировать в космические объекты согласно существующим теориям. Скопления галактик содержат от сотен до десятков тысяч галактик. Расстояния между скоплениями — десятки мегапарсек. Кроме галактик, во Вселенной присутствует равномерно заполняющее ее реликтовое электромагнитное излучение, небольшое количество очень разреженного меж-галактичекого обычного вещества и неизвестное количество пока не поддающейся наблюдению, но проявляющей себя в некоторых гравитационных эффектах субстанции, называемой скрытой массой и скрытой энергией. Их доля в космосе сейчас оценивается в 95-97%!