ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.07.2024
Просмотров: 458
Скачиваний: 0
СОДЕРЖАНИЕ
1.2. Фундаментальные принципы управления
1.2.1. Принцип разомкнутого управления
Лекция 2.Статический режим сау
2.2. Статические характеристики
2.3. Статическое и астатическое регулирование
Лекция 3.Динамический режим сау
3.1. Динамический режим сау. Уравнение динамики
3.2. Линеаризация уравнения динамики
3.4. Элементарные динамические звенья
Лекция 4.Структурные схемы сау
4.1. Эквивалентные преобразования структурных схем
Лекция 5.Временные характеристики
5.1. Понятие временных характеристик
5.2. Переходные характеристики элементарных звеньев
5.2.1. Безынерционное (пропорциональное, усилительное) звено
5.2.2. Интегрирующее (астатическое) звено
5.2.3. Инерционное звено первого порядка (апериодическое)
5.2.4. Инерционные звенья второго порядка
Лекция 6.Частотные характеристики
6.1. Понятие частотных характеристик
6.2. Частотные характеристики типовых звеньев
6.2.4. Инерционные звенья второго порядка
6.2.5. Правила построения чх элементарных звеньев
7.1. Частотные характеристики разомкнутых одноконтурных сау
Лекция 8.Алгебраические критерии устойчивости
8.1. Понятие устойчивости системы
8.2. Алгебраические критерии устойчивости
8.2.1. Необходимое условие устойчивости
Лекция 9.Частотные критерии устойчивости
9.2. Критерий устойчивости Михайлова
9.3. Критерий устойчивости Найквиста
Лекция 10.D-разбиение. Запас устойчивости
10.1. Понятие структурной устойчивости. Афчх астатических сау
10.2. Понятие запаса устойчивости
10.3. Анализ устойчивости по лчх
11.1. Теоретическое обоснование метода d-разбиений
11.3. Прямые методы оценки качества управления
11.3.1. Оценка переходного процесса при ступенчатом воздействии.
11.3.2. Оценка качества управления при периодических возмущениях
Лекция 12.Корневой и интегральный методы оценки качества сау
12.1. Корневой метод оценки качества управления
12.2. Интегральные критерии качества
Лекция 13.Частотные методы оценки качества
13.1. Теоретическое обоснование
13.2. Основные соотношения между вчх и переходной характеристикой
14.1.1. Включение корректирующих устройств
14.1.2. Синтез корректирующих устройств.
14.2. Коррекция свойств сау изменением параметров звеньев
14.2.1. Изменение коэффициента передачи
14.2.2. Изменение постоянной времени звена сау
Лекция 15.Включение корректирующих звеньев
15.1. Коррекция свойств сау включением последовательных корректирующих звеньев
15.1.1. Включение интегрирующего звена в статическую сау
15.1.2. Включение апериодического звена
15.1.3. Включение форсирующего звена
15.1.4. Включение звена со сложной передаточной функцией
15.2. Последовательная коррекция по задающему воздействию
14.1.1. Включение корректирующих устройств
Корректирующее устройство можно включить последовательно, параллельно-согласно или параллельно-встречно (по схеме с обратной связью).
Последовательное корректирующее устройство с передаточной функцией Wп включается обычно после предварительного усилителя. На рис.103а предварительный усилитель имеет передаточную функциюW3, выходной каскад усилителя -W2, исполнительный элемент -W1.
Параллельно-согласное корректирующее устройство с передаточной функцией Wпс(рис.103б) может иногда при меньшей сложности обеспечить нужное преобразование сигнала. Например, для коррекции свойств САУ часто требуются дифференцирующие и форсирующие звенья, которые конструктивно очень сложны. В то же время параллельно-согласное включение предварительного усилителя (W3 = K3) и простого апериодического звена с передаточной функциейWпс = позволяет реализовать функцию реального форсирующего звена. Такое соединение можно заменить эквивалентным форсирующим звеном с передаточной функцией
Wф = W3 + Wпс = ,
где Tф1=;Tф2=Tпс;Kф=K3+Kпс.
Наибольшими возможностями в плане коррекции свойств САУ обладает корректирующее устройство с передаточной функцией Wпв, включенное по схеме с отрицательной или положительной обратной связью, охватывающей один из звеньев САУ, как правило исполнительный элемент или выходной каскад усилителя (усилитель мощности)(рис.103в). Такие обратные связи называются местными. При этом передаточная функция эквивалентного звена:
Wэкв = .
Обычно передаточную функцию выходного каскада усилителя W2выбирают из условия|W2.Wпв| >> 1 в широком диапазоне частот, поэтому
Wэкв1/Wпв.
То есть свойства участка цепи с параллельно-встречным включением корректирующего устройства определяются только свойствами данного корректирующего устройства. Это основное достоинство данного способа включения. Влияние плохих свойств какого либо необходимого для САУ звена, например, его нелинейности, могут быть практически полностью устранены.
Местные корректирующие обратные связи делятся на жесткие и гибкие. Жесткая обратная связьдействует на систему как в переходном, так и в установившемся режиме, то естьWж(0)0. Она реализуется безынерционным или инерционным звеном:
Wж=KжилиWж=.
Гибкая обратная связьдействует только в переходном режиме, она реализуется либо дифференцирующим, либо реальным дифференцирующим звеном:
Wг =Kг pилиWг =.
Например, если интегрирующее звено Wи = Kи/pохвачено жесткой обратной связью звеномWж=Kж, то
Wэкв=,
где Kэкв= 1/Kж,Tэкв = 1/(Kи KэквKж). То есть жесткая обратная связь превращает интегрирующее звено в апериодическое. В случае гибкой обратной связи звеномWг =Kгp получаем
Wэкв =,
где Kэкв=. То есть гибкая обратная связь не изменяет структуру интегрирующего звена, но уменьшает его коэффициент передачи.
Таким образом, даже простейшие обратные связи способны существенно изменить свойства типовых динамических звеньев. Еще больший эффект дают сложные отрицательные и положительные обратные связи. Если основные элементы регулятора по своей природе позволяют создать обратную связь, то динамические свойства этих элементов часто могут быть изменены в нужном направлении.
14.1.2. Синтез корректирующих устройств.
Корректирующие устройства синтезируют на основании требований к свойствам САУ. Для этого необходимо знать передаточную функцию реальной САУ Wреал, которая чем то не удовлетворяет разработчика, и желаемую передаточную функциюWжел , которой должна обладать САУ в результате корректировки ее свойств.
При синтезе корректирующих устройств сначала определяю передаточную функцию возможного последовательного корректирующего устройства исходя из соотношения: Wп=Wжел /Wреал. Затем выясняют, при каких передаточных функциях параллельно-согласногоWпси параллельно-встречногоWпвкорректирующих устройств будет получен тот же эффект. После этого решают, какое из них более целесообразно и проще создать. При этом исходя из рис.103 можно записать:
Wжел =WWп=W1W2.(W3 + Wпс) = W(1 + Wпс/W3) = W/(1 + W2Wпв),
где W = W1W2W3.Из этого соотношения можно определить формулы перехода от одного корректирующего устройства к другому.
14.2. Коррекция свойств сау изменением параметров звеньев
Рассмотрим примеры коррекции свойств некоторой исходной замкнутой САУ (рис.104), передаточная функция которой в разомкнутом состоянии:
W(p) = .
Для этого воспользуемся критерием Найквиста. Значения параметров звеньев в каждом конкретном случае будем оговаривать отдельно.
14.2.1. Изменение коэффициента передачи
Для увеличения точности статической САУ надо увеличивать коэффициент передачи K. С ростомK увеличивается жесткость статической характеристики САУ (рис.105), то есть уменьшается статическая ошибка e.
На рис.106 сплошными линиями показаны частотные характеристики исходной разомкнутой САУ при T1= 0.5c,T2= 0.02c,T3= 0.002c,K= 10.
При увеличении коэффициента передачи KвNраз ЛАЧХ, не меняя своей формы, поднимается вверх на20lgN(на рисунке изображена пунктирной линией). При этом ЛФЧХ остается без изменения. Из рисунка видно, что с увеличением коэффициента передачи запас устойчивости по модулю уменьшается сh30дб/дек доhк15дб/дек, по фазе - с60oдок15o.
То есть, при повышении точности САУ путем увеличения коэффициента передачи необходимы мероприятия по повышению запаса устойчивости. Это главный недостаток такой коррекции.
К достоинствам можно отнести повышение быстродействия САУ, так как частота среза wср увеличивается, следовательно постоянная времени САУ - уменьшается.
14.2.2. Изменение постоянной времени звена сау
На рис.107 сплошными линиями изображены ЛЧХ разомкнутой САУ с параметрами: T1= 0.05c,T2= 0.01c,T3= 0.001c,K= 100. Из рисунка видно, что САУ неустойчива. При увеличении постоянной времениT1в 5 раз (T1’= 0.2с) ЛАЧХ и ЛФЧХ приобретают вид, показанный на рисунке пунктирной линией. При этом видим, что замкнутая САУ становится устойчивой. Заметим, что сопрягающая частотаW1данного звена располагается левее частоты среза ср. Если бы она располагалась правее частоты среза, то есть, если бы мы увеличивали постоянную времени, например, третьего звенаT3, то это привело бы к уменьшению запаса устойчивости.