Файл: Методичка по механике вся Печать новый вариант12г.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 15.04.2024

Просмотров: 515

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Ваш репетитор: Филимонова л.В.

Методические указания

По изучению раздела физики

«Механика»

Содержание:

1.6.3 Движение под углом к горизонту …………………………....33

!!!! Различай:

Основные термины и понятия

Часть 1. КинематикАизучает виды движения тел, не рассматривая причины, которые это движение обусловливают. Отвечает на вопрос:Как движется тело?

Часть 2. Динамика изучает законы движения тел и причины, которые вызывают или изменяют это движение. Отвечает на вопрос:Почему движение тела меняется?

Часть 3. Статика изучает условия (законы) равновесия тела или системы тел. Отвечает на вопрос:Что надо, чтобы тело не двигалось?

Часть 4. Законы сохранения задают фундаментальные инварианты во всех изменениях. Отвечают на вопрос:Что сохраняется в системе при данных в ней изменениях?

Основные формулы кинематики

Общие методические рекомендации по решению задач

Примеры решения задач

Прямолинейное движение

Движение под действием силы тяжести

Движение под углом к горизонту

Средняя скорость

Относительность движения

Движение по окружности

Основные понятия и законы

Примеры решения задач

Прямолинейное движение под действием нескольких сил

Движение связанных тел с использованием блоков

Движение по горизонтальной плоскости

Движение по наклонной плоскости

Действие сил при вращательном движении

Комплексные задачи повышенной трудности

Основные термины и уравнения

Второе условие равновесия – алгебраическая сумма моментов всех сил, действующих на тело, относительно какой-либо точки а равна нулю:

Примеры решения задач

Основные понятия и законы

Примеры решения задач

Работа и энергия. Работа внешних сил и ее связь с изменением энергии. Мощность.

Кинетическая энергия при вращательном движении материальной точки

Энергия упруго деформированного тела

Механический импульс и закон сохранения импульса

Взаимосвязь законов сохранения импульса и энергии

Задачи на повторение

Механика. Работа. Законы сохранения.

Графики затухающих колебаний

План изучения явлений

«Игра слов».

Действия с векторами

Проверяется в тестах:

Основные этапы решения физической задачи

Fтр.ск. = N2,

где из (2) находим: N2 = m2g – Fmaxsin,

получим: Fтр.ск. = (m2g – Fmaxsin),

далее из (3а): аmax = Fтр.ск. /m1 =(m2g – Fmaxsin)/m1

и наконец подставляем в (4): Fmaxcos = (m1 + m2) аmax

откуда: Fmaxcos = (m1 + m2) (m2g – Fmaxsin)/m1

окончательно находим: .

Ответ на вопрос об ускорении тележки состоит из двух частей: если сила трения не достигла своего предельного значения, то ускорение тележки находится из равенства для системы «груз-тележка», т.е. а1=Fcos/(m1+m2), иначеа1maxи не меняется при дальнейшем увеличении силы F. Получаем:

при и

при .

Вычисления предлагается сделать читателю. 

Задача-пример 2.Через невесомый блок перекинута веревка с грузами m и 2m. Блок движется вверх с ускорением а0. Пренебрегая трением, найти давление блока на ось.

Будем искать решение задачи, отталкиваясь от того, что требуется найти. По условию задачи требуется определить силуFД, с которой блок действует на ось, поднимающую его вверх с силойN. По 3-му закону Ньютона:FД = N. Т.е. теперь надо искать величину силыN, приложенной к блоку, а для этого придется записать 2-й закон Ньютона для блока.


Методическое указание. Чтобы найти неизвестную силу часто необходимо: 1) определить на какое тело она действует (к какому телу приложена); 2) записать равенство, включающее эту силу, коим является 2-й закон Ньютона для этого тела. Иначе говоря, формула (2.2) – основное равенство, включающее в себя величины действующих на тело сил и позволяющее выразить из нее искомую силу, если только для нее нет иной «личной» формулы-определения, формулы-зависимости (взаимосвязи с другими величинами, данными в задаче, например, формула (2.5) для силы трения) или иной формулы-закономерности (например, формула (2.4) для силы упругости).

На блок действуют три силы: ,и.

Заметим, что при отсутствии трения между нитью (веревкой) и блоком, а также если нет трения между осью и блоком и масса блока принимается равной нулю (блок невесомый), то величины сил натяжения нитей, приложенных к разным сторонам блока, равны между собой. Поэтому на рисунке мы обозначаем их одинаково.

Получаем в проекциях на направление движения: mблокаa0 = N – 2T. Т.к. по условиюmблока = 0, тоN = 2T. И теперь переходим к нахождению силыT, рассматривая ее как силу, приложенную к грузам. Первый груз массой m движется вверх под действием двух силmgиTс ускорениема1. Аналогично второй груз массой2mдвижется под действием сил2mgиTс ускорениема2(на рис. точное направлениене указано, задана лишь линия, вдоль которой направлен этот вектор) .

Здесь необходимо обратить внимание на ответы на следующие вопросы:

  1. В каком направлении движется второй груз (вверх или вниз)?

  2. Равны ли по модулю ускорения а1иа2? Почему?

  3. Что одинаково при движении грузов, связанных одной нитью?

Методическое указание. Важно вспомнить, что все величины, участвующие в записи 2-го закона Ньютона должны быть заданы в одной и той же ИСО. Тогда замечаем, что система отсчета, связанная с блоком, который движется с ускорением относительно Земли, не является инерциальной (по определению). Значит, ускорения грузов должны быть определены относительно неподвижной системы отсчета, той, относительно которой рассматривается движение самого блока! Что же касается движения грузов относительно блока, то оно равноускоренное и соответствующее ускорение, одинаковое для обоих грузов, обозначим через аотн. Тогда абсолютные ускорения грузов нужно будет находит по формуле, аналогичной формуле сложения скоростей (см. раздел Кинематика, Относительность движения): (2.6).


Итак, записываем 2-й закон Ньютона для каждого груза в проекциях на ось у:

ma= T– mgи2mа = Т – 2mg(а).

С учетом формулы (2.6) имеем: – для первого груза и – для второго груза, где аотн1= аотн2.

Тогда в проекциях на ту же ось: а0 + аотн иа = а0 – аотн.

Теперь видно, что т.к. ускорение первого груза, равное сумме двух положительных величин, положительно, то он движется вверх. А вот про второй груз ничего однозначно утверждать нельзя, т.к. знак полного ускорения его зависит от соотношения величин а0иаотн: еслиа0 > аотн, то второй груз будет двигаться вверх (по направлению оси у), еслиа0 < аотн, то – вниз (противоположно осиу).

Подставляем в (а): Т – mg = m(а0 + аотн)иТ – 2mg = 2m(а0 – аотн).

Таким образом получаем двауравнения сдвумянеизвестнымиТиаотн, откуда, исключая вторую неизвестную, находим значение силы натяжения нити, затем силуNи дает окончательный ответ на вопрос задачи.

Умножаем первое уравнение на 2 и почленно складываем со вторым:

2(T - mg) + (Т – 2mg) = 2m(а0 + аотн) + 2m(а0 – аотн), раскрываем скобки и приводим подобные слагаемые:

3Т – 4 mg = 4mа0, отсюда3Т = 4m(а0 +g) или Т = 4/3m(а0 +g).

Тогда сила давления блока на ось равна Fд = 8/3m(а0 +g).

Методическое указание. В задачах с участием блоков возможны следующие случаи: 1) установка включает подвижный блок; 2) блок в конструкции закреплен неподвижно, относительно своей оси; 3) подвижный и неподвижный блок соединены общей, одной нитью. В первом и во втором случаях чаще всего оказываются равными силы натяжения нити в различных ее участках, а сам блок необходим только для изменения направления действия силы (например, в случае поднятия груза с помощью нити перекинутой через неподвижный блок: с какой силой тянем веревку, такая и поднимает груз). В третьем случае, система из одной пары «подвижного и неподвижного» блоков позволяет кроме того получать выигрыш в силе в два раза.


Задача-пример 3.К оси подвижного блока прикреплен груз массой m. С какой силой F нужно тянуть конец нити, перекинутой через второй блок, чтобы груз двигался вверх с ускорением а? Чтобы груз покоился? Массой блоков и нити пренебречь.

Решение. Прежде всего, заметим, что сила натяжения нити в любой ее точке одинакова и равна по величине силе, с которой тянут за конец нити:

T = F(б)

Рассматривая 2-й закон Ньютона для подвижного блока, получим Р = 2Т(в), т.к. масса блока равна нулю. По 3-му закону НьютонаР = N(г), т.е. сила с которой груз действует на ось блока, равна силе, с которой ось действует на груз. Из 2-го закона Ньютона для груза в проекциях на направление движения имеем:

ma = N – mg,

подставим (б), (в) и (г): ma = 2F – mg, откудаF = ½ m(a + g).

Замечания.Отметим, что неподвижный блок применяется только для изменения направления действия силы. Тогда как подвижный блок в случае, если нити с обеих сторон параллельны (расстояние между точками их касания о блок равно 2R) дает выигрыш в силе в 2 раза (рассматривается поворот блока относительно одной из точек касания его с нитью). Последовательное соединение нескольких пар чередующихся подвижного и неподвижного блоков дает конструкцию с выигрышем в силе в несколько раз.

Большую группу задач образуют задачи, рассматривающие движение тел по наклонной плоскости. Выделим несколько основных моментов, на которые следует обращать внимание при их решении.

Методические указания. Возможны два случая:

1) наклонная плоскость неподвижна относительно горизонтальной поверхности. В этом случае ускорение тела относительно наклонной плоскости является его абсолютным ускорением и может быть включено в запись закона Ньютона для тела. Также необходимо определить вид движения (т.е. есть ли ускорение или же оно равно нулю). Ускорение тела равно нулю, если оно покоится или движется с постоянной скоростью. Второй закон Ньютона лучше записывать в форме 3 для равнодействующей силы (общий случай). А направление осей чаще всего должны выбираться вдоль наклонной плоскости (ось х) и перпендикулярно к ней (ось у). Проецирование на эти оси приводит к получению двух скалярных равенств для сил, действующих на тело. Кроме них, при наличии трения о наклонную плоскость при скольжении тела записывается и будет обязательно использоваться при решении задачи формула (2.5) для силы трения скольжения. Она же включается в решение при условии, что тело не скользит, но находится в граничном состоянии (т.е. вот-вот начнет скользить или только что скользить перестало). Дополнением могут быть некоторые кинематические зависимости.


2) наклонная плоскость сама движется с ускорением. Тогда 2-й закон Ньютона нельзя записывать относительно наклонной плоскости, т.е. ускорение тела должно быть определено относительно неподвижной системы отсчета (по формуле (2.6)), в которой и будет записываться формула (2.2), как для тела, так и для плоскости, если это необходимо и требуется исходя из условия и данных задачи.

Задача-пример 4.С каким ускорением должна двигаться наклонная плоскость в горизонтальном направлении, чтобы находящееся на ней тело массой m не двигалось относительно наклонной плоскости при условии отсутствия трения?

Решение: Прежде всего, заметим, что система отсчета, связанная с наклонной плоскостью не является инерциальной. Поэтому нельзя рассматривать движение тела относительно нее с целью записать второй закон Ньютона. А значит будем рассматривать движение тела относительно горизонтальной неподвижной плоскости С1. В С1 наклонная плоскость движется с ускорением , и если тело не движется по наклонной плоскости, то это значит, что оно движется точно также как и сама наклонная плоскость, т.е. с тем же ускорением. Указываем теперь все силы, действующие на тело (рис.). Результирующая этих сил и сообщает телу данное ускорение, т.е. их векторная сумма направлена горизонтально в сторону ускорения (вправо на рис.). Запишем 2-й закон Ньютона для тела в системе С1:

- векторная форма. В проекциях на оси

х:mgsin + 0 = ma, отсюда и находим:а = gsin,

y:-mgcos + N = 0.

Методические указания. Проектировать векторное равенство необходимо почленно: переходя от первого слагаемого ко второму и т.д. и внимательно определяя проекции каждого из них. Для этого учитываем правила: если вектор направлен вдоль оси, то величина его проекции равна модулю соответствующей силы, а знак определяется по совпадению или несовпадению направлений оси и вектора этой силы («+» и «-» соответственно). Если же вектор силы направлен под углом к оси, то проводим через его начало прямую, параллельную оси, опускаем из конца вектора на эту прямую перпендикуляр и получаем прямоугольный треугольник, один из острых углов которого равен углу наклона плоскости  (находим его по правилу: углы, образованные взаимно перпендикулярными сторонами равны). Тогда из соотношений длин и величин углов в прямоугольном треугольнике находим длину катета, равного величине проекции силы на ось, и аналогично определяем знак этой проекции.