Файл: Тема Основные представления о безопасности сырья и продуктов питания.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 1486

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ

КАЧЕСТВО ПРОДОВОЛЬСТВЕННЫХ ТОВАРОВ И ОБЕСПЕЧЕНИЕ ЕГО КОНТРОЛЯ

ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ КСЕНОБИОТИКАМИ ХИМИЧЕСКОГО И

ПИЩЕВЫЕ ОТРАВЛЕНИЯ. ОПРЕДЕЛЕНИЕ И КЛАССИФИКАЦИЯ.

Классификация пищевых отравлений

ПИЩЕВЫЕ ОТРАВЛЕНИЯ МИКРОБНОЙ ЭТИОЛОГИИ

Общие для интоксикаций и токсикоинфекций клинико-эпидемиологические признаки

Условия, приводящие к развитию отравления

Некоторые клинические симптомы при пищевых отравлениях бактериальной этиологии

Профилактика пищевых отравлений микробной этиологии

ПИЩЕВЫЕ ОТРАВЛЕНИЯ НЕМИКРОБНОЙ ЭТИОЛОГИИ

Пищевые отравления ядовитыми грибами

ОТРАВЛЕНИЯ ПИЩЕВЫМИ ДОБАВКАМИ

Основные пути загрязнения продуктов питания и продовольственного сырья

Отравления примесями, мигрирующими в продукты из оборудования, инвентаря, тары, упаковочных пленок

Отравления пестицидами

Группы пестицидов

Хроническая алиментарная нитритно-нитратная метгемоглобинемия

Загрязнители, подлежащие контролю в различных группах продовольственного сырья и пищевых продуктов

Меры токсичности веществ

ЗАГРЯЗНЕНИЕ МИКРООРГАНИЗМАМИ И ИХ МЕТАБОЛИТАМИ

Меры профилактики:

Меры профилактики:

Свойства ботулотоксина:

Пути проникновения возбудителя в пищевые продукты:

Ботулизм связан с употреблением:

Клиническая картина ботулизма:

Влияние экзотоксинов на состояние здоровье человека

Профилактические мероприятия при ботулизме

Микотоксины

Микотоксикозы

Классификация, клиника микотоксикозов

Профилактика отравлений ядовитыми растениями

Ядовитые семена сорняковых растений злаковых культур

Отравления ядовитыми растениями

Патулин и некоторые другие микотоксины

ПИЩЕВЫЕ ОТРАВЛЕНИЯ НЕУСТАНОВЛЕННОЙ ЭТИОЛОГИИ

Методы определения микотоксинов и контроль за загрязнением пищевых продуктов

ЗАГРЯЗНЕНИЕ ХИМИЧЕСКИМИ ЭЛЕМЕНТАМИ

ЗАГРЯЗНЕНИЕ ВЕЩЕСТВАМИ И СОЕДИНЕНИЯМИ, ПРИМЕНЯЕМЫМИ В РАСТЕНИЕВОДСТВЕ

Нитраты, нитриты, нитрозоамины

ЗАГРЯЗНЕНИЕ ВЕЩЕСТВАМИ, ПРИМЕНЯЕМЫМИ В ЖИВОТНОВОДСТВЕ

ЗАГРЯЗНЕНИЕ ДИОКСИНАМИ И ПОЛИЦИКЛИЧЕСКИМИ АРОМАТИЧЕСКИМИ УГЛЕВОДОРОДАМИ

Полициклические ароматические углеводороды

РАДИОАКТИВНОЕ ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ

Ситуационные задачи №1

Ситуационные задачи №2

Ситуационные задачи №3

Ситуационные задачи №4

Ситуационные задачи №5

Ситуационные задачи №6

Ситуационные задачи №7

Ситуационные задачи №8

Ситуационные задачи №9

Ситуационные задачи №10

Ситуационные задачи №10

Ситуационные задачи №11

Ситуационные задачи №12

Ситуационные задачи №13

Ситуационные задачи №14

Ситуационные задачи №15

Ситуационные задачи №16

Ситуационные задачи №17

Ситуационные задачи №18

Ситуационные задачи №19

Ситуационные задачи №20

Ситуационные задачи №21

Ситуационные задачи №22

Ситуационные задачи №23

ПРИЛОЖЕНИЕ № 1

При различных пищевых отравлениях проводятся следующие микробиологические исследования:

ПРИЛОЖЕНИЕ № 2

Продукты и материалы, подлежащие исследованию при пищевых отравлениях и порядок направления их в лабораторию

ПРИЛОЖЕНИЕ № 3

Образец протокола лабораторного исследования

ведется кампания за сортировку бытовых отходов, отделение пластмассовых изделий (в Швеции, например, это практикуется уже многие годы). Кроме того, шведам удалось найти способ получения бездиоксиновой бумаги. В ФРГ, США, Нидерландах, Японии после реконструкции мусоросжигательных заводов удалось свести образование диоксинов до минимума, во Франции разработаны антидиоксиновые фильтры.

Нельзя не отметить явления синергизма эффекта воздействия, превышающего сумму эффектов воздействия каждого из факторов.

Синергистами по отношению к диоксину могут быть: радиация, свинец, кадмий, ртуть, нитраты, хлорфенолы, соединения серы.

Полициклические ароматические углеводороды



Полициклические ароматические углеводороды (ПАУ) насчитывают более 200 представителей, которые являются сильными канцерогенами.

К наиболее активным канцерогенам относят 3, 4 – бенз(а)пирен, который был идентифицирован в 1933 году как канцерогенный компонент сажи и смолы, а также холантрен, перилен и дибенз(а)пирен.

К малотоксичным ПАУ относят антрацен, фенантрен, пирен, флуорантен.

Канцерогенная активность реальных сочетаний полициклических ароматических углеводородов на 70-80% обусловлена бенз(а)пиреном. Поэтому по присутствию бенз(а)пирена в пищевых продуктах и других объектах можно судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.

Канцерогенные ПАУ образуются в природе путем абиогенных процессов: ежегодно в биосферу поступают тысячи тонн бенз(а)пирена природного происхождения. Еще больше – за счет техногенных источников. Образуются ПАУ в процессах сгорания нефтепродуктов, угля, дерева, мусора, пищи, табака, причем, чем ниже температура, тем больше образуется ПАУ.

В пищевом сырье, полученном из экологически чистых растений, концентрация бенз(а)пирена 0,03-1,0 мкг/кг. Условия термической обработки значительно увеличивают его содержание до 50 мкг/кг и более. Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, например, жир молока экстрагирует до 95% бенз(а)пирена из парафино-бумажных пакетов или стаканчиков.

Высока концентрация бенз(а)пирена и в табачном

дыме.

С пищей взрослый человек получает бенз(а)пирена 0,006 мг/год. В интенсивно загрязненных районах эта доза возрастает в 5 и более раз.

ПДК бенз(а)пирена в атмосферном воздухе 0,1 мкг/100м3, в воде водоемов

0,005 мг/л, в почве 0,2 мг/кг.

Бенз(а)пирен обнаружен в хлебе, овощах, фруктах, маргарине, растительных маслах, в обжаренных зернах кофе, копченостях, жареных мясных продуктах. Причем его содержание значительно колеблется в зависимости от способа технологической и кулинарной обработки или от степени загрязнения окружающей среды.

РАДИОАКТИВНОЕ ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ



Источники радиоактивности, как и другие загрязнители, являются компонентами пищевых цепей: атмосфера – ветер – дождь – почва – растения – животные человек.

Анализируя данные о взаимодействии радионуклидов с компонентами природной среды и организмом человека, необходимо отметить следующее. Радионуклиды естественного происхождения постоянно присутствуют во всех объектах неживой и живой природы, начиная с момента образования нашей

планеты. При этом радиационный фон в различных регионах Земли может отличаться в 10 и более раз.

К радионуклидам естественного происхождения относят, во-первых: космогенные радионуклиды, во-вторых, радионуклиды, присутствующие в объектах окружающей среды.

Радон один из первых открытых человеком радионуклидов.
Этот благородный газ образуется при распаде изотопа радона (226Ra) и поступает в организм ингаляционным путем. Человек контактирует с радоном везде, но главным образом в каменных и кирпичных жилых зданиях (особенно в подвальных помещениях и на первых этажах), поскольку главным источником является почва под зданием и строительные материалы. Высокое содержание радона может быть в подземных водах. Доступным и эффективным способом удаления радона из воды является ее аэрация.

В результате производственной деятельности человека, связанной с добычей полезных ископаемых, сжиганием органического топлива, созданием минеральных удобрений и т.п., произошло обогащение атмосферы естественными радионуклидами, причем естественный радиационный фон постоянно меняется.

С момента овладения человеком ядерной энергией в биосферу начали поступать радионуклиды, образующиеся на АЭС, при производстве ядерного топлива и испытаниях ядерного оружия. Таким образом, встал вопрос об искусственных радионуклидах и особенностях их влияния на организм человека. Среди радионуклидов искусственного происхождения выделяют 21 наиболее распространенный, 8 из которых составляют основную дозу внутреннего облучения населения: 14С, 137Cs, 90Sr, 89Sr, 106Ru, 144Се, 131I, 95Zr.

Существуют три пути попадания радиоактивных веществ в организм человека:

  1. при вдыхании воздуха, загрязненного радиоактивными веществами;

  2. через желудочно-кишечный тракт – с пищей и водой;

  3. через кожу.

Для наиболее опасных искусственных радионуклидов
, к которым следует отнести долгоживущие стронций–90 (90Sr), цезий-137 (137Cs) и короткоживущий йод–131(131I), в настоящее время выявлены закономерности всасывания, распределения, накопления и выделения, а также механизмы их связи с различными биологическими структурами. Одной из главных задач по профилактике и снижению степени внутреннего облучения следует считать уменьшение всасывания радиоактивных элементов при их длительном поступлении в организм человека с пищевыми продуктами.

Эффект действия ионизирующих излучений на клетку и организм в целом можно понять, проследив изменения, происходящие на всех этапах следующей цепи: биомолекулы - клеточный компартмент-клетка-ткани-организм, и установив взаимосвязь между ними.

Принято рассматривать три этапа радиационного поражения клетки.

  1. этап можно назвать физическим. На этом этапе происходит ионизация и возбуждение макромолекул; при этом поглощенная энергия реализуется в слабых

местах (в белках – SH-группы, в ДНК – хромофорные группы тимина, в липидах – ненасыщенные связи).

  1. этап химические преобразования. На этом этапе происходит взаимодействие радикалов белков, нуклеиновых кислот, липидов с водой, кислородом, с радикалами воды и т.п. Это в свою очередь приводит к образованию гидроперекисей, ускоряет процесс окисления, вызывает множественные изменения молекул. В результате этого начальный эффект многократно усиливается. Разрушается структура биологических мембран, усиливаются другие процессы деструкции, высвобождаются ферменты, наблюдается изменение их активности.

  2. этап – биохимический. На этом этапе происходят нарушения, которые связаны с высвобождением ферментов и изменением их активности. Различные ферментные системы реагируют на облучение неоднозначно. Активность одних ферментов после облучения возрастает, других – снижается, третьих – остается неизменной. К числу наиболее радиочувствительных процессов в клетке относится окислительное фосфорилирование. Нарушение этого процесса отмечается через 20-30 минут при дозе облучения 100 рад. Оно проявляется в повреждении системы генерирования АТФ, без которой не обходится на один процесс жизнедеятельности.