Файл: Учебник по философии Красноярск.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.12.2020

Просмотров: 3279

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Тема 1. ПРЕДРЕЛИГИОЗНОЕ И РЕЛИГИОЗНОЕ МИРООЩУЩЕНИЕ

Предрелигиозные формы мироощущения. Колдовство (магия), анимизм, тотемизм

Религиозное мироощущение

Ренессанс религии в современной России

Тема 2. ОТ МИФОЛОГИИ К ФИЛОСОФИИ

Специфика мифологического мышления

Мифология и древние верования

Эстетика древней мифологии

Мифологический эпос Гомера и Гесиода

ТЕМА 3. ВОЗНИКНОВЕНИЕ ФИЛОСОФИИ

Философия как попытка понять мир

Основные философские проблемы

Роль философии в жизни общества

ТЕМА 4. МИРОВОЗЗРЕНИЕ

Понятие мировоззрения

Философское мировоззрение

Идеализм и его формы

Материализм и его формы

ТЕМА 5. ФИЛОСОФСКОЕ УЧЕНИЕ О БЫТИИ И МАТЕРИИ

Понятие бытия

Эволюция понятия материи в естественнонаучном материализме

ТЕМА 6. СПОСОБЫ И ФОРМЫ СУЩЕСТВОВАНИЯ МАТЕРИИ В ТРАКТОВКЕ ЕСТЕСТВЕННОНАУЧНОГО МАТЕРИАЛИЗМА

Движение как способ существования материи

Пространство и время как формы существования материи

ТЕМА 7. КОСМОГОНИЯ

Мифологическая и религиозная космогония

Древнегреческие космогонические теории

Космологическая проблема

ТЕМА 8. ФИЗИЧЕСКАЯ КАРТИНА МИРА

Теоретические модели, реальность и истинность математики

Эволюция представлений о физической картине мира

ТЕМА 9. ТЕОРИЯ ПОЗНАНИЯ

Специфика философской теории познания

Субъект и объект познания

Знание как предмет теории познания

Эмпиризм и рационализм в теории познания

Теория познания в немецкой классической философии

Развитие теории познания в марксистской и современной философии

ТЕМА 10. ЧУВСТВЕННОЕ И РАЦИОНАЛЬНОЕ ПОЗНАНИЕ

Роль и назначение чувств и разума в познании

Структура процесса познания

Диалектика чувственного и рационального познания

ТЕМА 11. ПРОБЛЕМЫ ПОЗНАНИЯ

Познание и предвидение; интуитивное и априорное знание

Границы познания. И. Кант: вещи в себе и явления, знание и вера

Познание как путь к истине. Понятие истины. Объективная, относительная и абсолютная истина

Критерии истины

ТЕМА 12. ОБЩЕСТВО КАК ПРЕДМЕТ ФИЛОСОФСКОГО ИЗУЧЕНИЯ

Развитие философского понимания сущности общества и его структуры

Общество как развивающаяся система

Марксистская теория общества

Перспективы общества

ТЕМА 13. ОБЩЕСТВО И ИСТОРИЯ

История как предмет исследования

Циклическая концепция исторического прогресса

Линейная концепция истории

Спиралевидность общественного развития

Ковариантная модель всемирной истории

Постмодернистские концепции истории

ТЕМА 14. КУЛЬТУРА И ЦИВИЛИЗАЦИЯ

Соотношение культуры и цивилизации. Понятие цивилизации

Многообразие цивилизаций

Восток – Запад – Россия как типы цивилизации

ТЕМА 15. КОНЦЕПЦИЯ ЕВРАЗИЙСТВА

Истоки евразийства

Программа евразийства

Православные идеалы

Философское осмысление мировой истории

Вопросы истории России

Идеократическое государство

ТЕМА 16. ФИЛОСОФСКИЕ ВОПРОСЫ ПРОИСХОЖДЕНИЯ ЖИЗНИ

Ранние концепции происхождения жизни, их конкретно-научная и философская ограниченность

Понятие жизни

Современные конкретно-научные предпосылки решения вопроса о возникновении жизни

Взаимосвязь развития органического мира с развитием всей планеты

Роль философской методологии в изучении проблемы происхождения жизни

ТЕМА 17. СУЩНОСТЬ ЧЕЛОВЕЧЕСКОГО БЫТИЯ

Донаучные воззрения на происхождение человека

Научный взгляд на проблему человека

Детерминизм и свобода человека

Движущие силы становления человека

ТЕМА 18. ОБЩЕСТВЕННЫЙ ПРОГРЕСС И ГЛОБАЛЬНЫЕ ПРОБЛЕМЫ ЧЕЛОВЕЧЕСТВА

Содержание общественного прогресса

Законы и критерии общественного прогресса

Глобальные проблемы современных цивилизаций

Будущее

СЛОВАРЬ ТЕРМИНОВ

ЛИТЕРАТУРА

Теоретический уровень познания можно характеризовать двумя подуровнями: а) частные теоретические модели, относящиеся к ограниченной области явлений; б) развитые научные теории, включающие частные законы в качестве следствий.

В структуре теории выделяются теоретические модели и теоретические законы и принципы, описывающие модели.

В развитых в теоретическом отношении дисциплинах законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих модель, выражаются в форме физических величин, а отношение между этими признаками – в форме математических соотношений (дифференциальные, интегральные, линейные уравнения, и т.д.). Наиболее успешно математические методы использовались при создании естественнонаучных теорий. Сами математические методы совершенствовались и развивались наряду с развитием физических теорий.

В наши дни естествознание имеет дело с динамической реальностью, которая непрерывно изменяясь по определенным известным и еще неизвестным, не открытым законам природы, заставляет изменять наше понимание реальности. Зачастую мы вынуждены признавать реальность объектов и явлений, недоступных непосредственному чувственному восприятию. В современной теории элементарных частиц своеобразными "кирпичиками", из которых складываются тяжелые частицы – адроны – являются кварки. Несмотря на то, что в свободном состоянии кварки существовать не могут, реальное, объективное существование кварков в связанном состоянии признается современной теоретической физикой. Природа богаче, чем говорят о ней наши органы чувств.

Реальный мир есть не то, о чем говорят наши органы чувств, ограниченные воспроизводством реальности на основе макроскопического опыта. Реальный мир (с точки зрения ученого-естест­венника) это то, что говорят нам созданные человеком физические теории, которые с помощью математического аппарата описывают широкий круг явлений в природе. В евклидовой геометрии основные элементы – точка, линия и плоскость – абстрактные, мысленные объекты являются идеализацией реальных объектов. Например, линия – это абстрактное представление луча света. В современной математике невозможно проследить связь ее элементов и понятий с реальностью. Тем не менее мы практически абсолютно верим в истинность математического описания реальности.

Почему у математики такая сила? На этот вопрос нельзя дать сейчас исчерпывающего ответа и вряд ли будет возможность это сделать в ближайшем будущем. Но на вопрос, насколько истинным является математическое описание реальности можно попытаться дать ответ. Прежде всего, полное описание реальности невозможно, если учесть многообразие и сложность всех элементов и процессов в природе. Только в рамках определенной теоретической модели мы в состоянии описывать реальность.


Рассмотрим такой пример. Первый закон Кеплера утверждает, что планеты солнечной системы движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. Опыт показывает, что этот закон практически точен. В модели, в которой учитывается взаимодействие по закону всемирного тяготения только Солнца и одной планеты, действительно точным решением уравнения движения планеты вокруг Солнца является эллипс.

В рамках математической модели, в которой учитывается взаимодействие между планетами, траектории движения планет немного отличаются от эллиптических, что также соответствует эксперименту.

Но отмеченные выше математические модели в рамках фундаментальной теории – классической механики Ньютона так же недостаточны для полного соответствия с экспериментом. В частности, смещение перигелия Меркурия, рассчитанное в классической механике, не совпадает с экспериментально измеренным смещением. Объяснение реального смещения перигелия Меркурия дается уже другой фундаментальной теорией – теорией относительности Эйнштейна. Следовательно, математика говорит нам о реальности с какой-то степенью точности. Созданная человеком математическая теория физического мира – это не описание явлений в том виде, в каком мы их воспринимаем, а некая символическая конструкция.

До середины XIX в. считалось, что математический порядок и гармония положены в план, описывающий мироздание и задача математиков заключается не в создании, а в открытии математических законов, лежащих в основе плана мироздания. Еще ранее Блез Паскаль был убежден в истинности математических законов природы.

Следует различать два рассуждения: а) в какой степени математика отражает и представляет истину о реальном физическом мире; б) в какой степени истинной является сама математика и имеет ли она объективную реальность. Например, в существовании математики Платон видел доказательство существования бессмертной души, то есть природа в своей основе имеет некий математический план. Другая точка зрения на математику, как на изобретение человеческого разума нашла поддержку многих математиков в XIX в. Артур Кэли, известный английский математик XIX в. заявил: "Мы... обладаем априорными познаниями, не зависящими не только от того или иного опыта, но абсолютно от всякого опыта... Эти познания составляют вклад нашего разума в интерпретацию опыта". Такие знаменитые математики как Рихард Дедекинд и Карл Вейерштрасс считали математику творением человека. В письме к Веберу Дедекинд писал: "По-моему то, что мы понимаем под числом... есть нечто новое... созданное нашим разумом. Мы божественная раса и обладаем способностью творить". И. Кант видел источник математики в организационной силе человеческого разума. Современные философы утверждают, что математика является примером того, как творческая активность разума рождает новые формы мысли, создает новые понятия, которые как могут отражать объективную реальность, так и могут существовать в виде непротиворечивого продукта разума, который может быть востребован для описания реальности в далеком будущем.


Две точки зрения на истинность математики, тем не менее не противоречат тому, что современная физика всецело полагается на математический аппарат. Новейшие области физики очень далеки от понимания с точки зрения "здравого смысла". Понять их можно только с помощью математики. Вот как выразил значение математики в познании реальности Эйнштейн: "...я убежден, что посредством чисто математических конструкций мы можем найти те понятия и закономерные связи между ними, которые дадут ключ к пониманию законов природы... Поэтому я считаю в известном смысле оправданной веру древних в то, что чистое мышление в состоянии постигнуть реальность".

Полного соответствия между математикой и физической реальностью не существует. Тем не менее существует какое-то "божественное" доверие к математике и при описании природных (и не только природных) явлений). Из философов, убежденных в том, что математика – верный путь к реальности, наиболее влиятельным был Р. Декарт. По его мнению, природа основана на математических принципах. А великий Ньютон считал, что Бог сотворил мир на основе математических принципов. Суть того, во что непоколебимо верили Декарт, Кеплер, Галилей, Ньютон и Лейбницу сводится к следующему: природе внутренне присуща некая скрытая гармония, которая отражается в наших умах в виде простых математических законов. Именно в силу этой гармонии математической моделирование природных процессов способно описывать и предсказывать явления природы.

Возникновение неевклидовой геометрии в XIX в., которой сначала не находилось места в физических теориях для описания реального пространства, увеличило число сторонников точки зрения на математику, как на продукт чистого разума. Но в 1915 г. А. Эйнштейн создает великую теорию – общую теорию относительности, в которой использует риманову геометрию. Неевклидова геометрия, явившаяся в свое время продуктом математического творчества, посредством общей теории относительности в настоящее время находит подтверждение в природе ("черные дыры", кривизна пространства-времени и др. следствия общей теории относительности).

Сила математического аппарата блестяще демонстрировалась, несмотря на разные точки зрения на объективное и субъективное существование математики, в разные годы и разных физических теориях. К таким теориям следует отнести классическую механику Ньютона, электромагнитную теорию Максвелла, специальную и общую теорию относительности Эйнштейна, квантовую механику Шредингера и Гейзенберга. Рассматривая общефилософские вопросы естествознания А. Эйнштейн писал: "...Почему возможно такое превосходное соответствие математики с реальными предметами, если сама она является произведением только человеческой мысли, не связанной ни с каким опытом? Может ли человеческий разум без всякого опыта, путем одного только размышления понять свойства реальных вещей?"


Если в этой связи обратиться к Канту, то он задавался тем же вопросом. Вывод его состоял в том, что мы не знаем и не можем знать природу. Например, наш разум наделен врожденными структурами, способными воспринимать пространство только согласно законам евклидовой геометрии, следовательно, законами пространства могут быть лишь законы евклидовой геометрии.

Знаменитый философ и астроном ХХ в. А. Эддингтон вполне разделял идею Канта. Большинству ученых Эддингтон известен как основоположник теории внутреннего строения звезд и специалист по релятивистской космологии. Наряду с этими астрофизическими исследованиями Эддингтон считается создателем философской теории – новой эпистемологии. Эддингтон дает анализ понятия физической величины. "Чистый математик имеет дело с идеальными величинами, обладающими по определению теми свой­ствами, которые он сам произвольно приписывает... Физическая величина есть прежде всего результат измерений и вычислений – она будет, так сказать, сфабрикованной вещью, созданной нашими операциями". С точки зрения Эддингтона нельзя считать, что сконструированная физиком величина существует в общей картине мира как нечто, что могло бы быть воспринято высшим разумом без всякой связи с операциями с измерительными приборами. Эддингтон категорически утверждает: "Физические величины определяемы не измерительными процессами... и образуют настоящий исходный пункт для нового теоретического построения".

При использовании различных теоретических моделей для объяснения природных явлений математический аппарат доказывал и доказывает свою непостижимую эффективность. И все же роль математики в современной физике шире, чем просто удобный инструмент исследования. Конечно, несомненна роль математики в обобщении и систематизации с помощью собственного (математи­ческого) аппарата физических экспериментов. Но, вероятно, математика составляет сущность естественно-научных теорий. Максвелл, создавший математическую теорию электромагнитного поля, тщетно попытался изобрести механическую модель эфира для объяснения существования электромагнитных волн. Поразительно то, что только математической теории (дифференциальных уравнений для электрической и магнитной составляющих поля) вполне достаточно и для объяснения наблюдаемых электромагнитных явлений и для предсказания результатов опыта.

Хотя математика и является человеческим творением, она помогла раскрыть тайны физического мира, существующего независимо от нас. Стоит только удивляться, что природа проявляет столь высокую степень соответствия математическим формулам.

Эволюция представлений о физической картине мира

Термин "мир" применяется как обозначение некоторой сферы деятельности, изучаемой данной наукой. Здесь мы ограничимся рассмотрением наиболее развитой и конкретной из всех научных картин мира – физической картиной мира.


Одной из важнейших характеристик понятия "физическая картина мира" является ее эволюция – постоянное развитие и смена одних картин другими. Первой сформировавшейся картиной мира в физике была механистическая картина мира. В свою очередь она возникла под воздействием античной картины мира (Демокрита, Эпикура, Лукреция) и идей эпохи Возрождения. Решающую роль среди последних сыграли: принцип материального единства мира, принцип причинности, принцип экспериментальной обоснованности, принцип математического описания природных явлений. Все эти принципы явились философским обоснованием механистической картины мира. Окончательно сформировалась она после создания классической механики И. Ньютона.

Картина мира является более широким понятием, чем теоретическая модель. Тем не менее, как и в модели, в механистической картине мира есть основные понятия и основные принципы, составляющие теоретический и философский фундамент картины.

Основные понятия классической механики: 1) материя – вещество, состоящее из неделимых частиц; 2) движение – механическое перемещение в пространстве; 3) пространство – пустое вместилище тел, описываемое геометрией Эвклида; 4) время – абсолютная категория, характеризующая длительность процессов; 5) масса – мера инертности и мера тяготения.

Основные принципы механики: 1) принцип относительности Галилея (все тождественные механистические явления проистекают одинаковым образом в различных инерциальных системах отсчета; 2) принцип дальнодействия. Во времена Ньютона было известно только одно – гравитационное взаимодействие. Принцип дальнодействия заключается в том, что гравитационное взаимодействие осуществляется с бесконечно большой скоростью через пустое пространство без посредства чего-либо.

На смену механистической картине мира пришла электродинамическая. Основы электродинамической картины мира заложены трудами М. Фарадея и Дж. Максвелла. В отличие от механистической картины мира, где исходными философскими идеями были классический атомизм и механицизм, в электродинамической картине исходной идеей стал континуализм. В частности, Фарадей положил в основу истолкования физических явлений континуальные, непрерывные представления о материи. Передача взаимодействия в этой новой картине мира осуществляется материальным электромагнитным полем. Таким образом, материя в электродинамической картине мира представляется в двух формах – вещество и поле. После создания А. Эйнштейном специальной теории относительности в 1905 г. электродинамическая картина мира приобрела релятивистский характер. На смену абсолютным пространству и времени пришло четырехмерное плоское пространство-время, на смену дальнодействию пришло близкодействие. Можно просуммировать основные характеристики электродинамической картины мира: