Файл: Линейная Алгебра от 2 октября 2013.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 11.08.2024

Просмотров: 593

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Т. Н. Матыцина е. К. Коржевина линейная алгебра

Оглавление

Введение

1. Множества

1.1. Множества и их элементы. Способы задания множеств

1.2. Подмножества. Диаграммы Эйлера – Венна

1.3. Операции над множествами и их свойства

1. Объединение (или сумма).

2. Пересечение (или произведение).

3. Разность.

4. Декартовое произведение (или прямое произведение).

Свойства операций над множествами

1.4. Метод математической индукции

1.5. Комплексные числа

Операции над комплексными числами

Геометрическая интерпретация комплексных чисел

Тригонометрическая форма комплексного числа

Действия над комплексными числами в тригонометрической форме

3. Возведение в степень.

4. Извлечение корня n-ой степени.

Показательная форма комплексного числа

2. Бинарные отношения

2.1. Понятие отношения

Способы задания бинарных отношений

Операции над бинарными отношениями

2.2. Свойства бинарных отношений

2.3. Отношение эквивалентности

2.4. Функции

3. Матрицы и действия над ними

3.1. Общие понятия

3.2. Основные операции над матрицами и их свойства

3.2.1. Сложение однотипных матриц

3.2.2. Умножение матрицы на число

3.2.3. Умножение матриц

3.3. Транспонирование матриц

4. Определители квадратных матриц

4.1. Определители матриц второго и третьего порядка

4.2. Определитель матрицы n-го порядка

4.3. Свойства определителей

4.4. Практическое вычисление определителей

5. Ранг матрицы. Обратная матрица

5.1. Понятие ранга матрицы

5.2. Нахождение ранга матрицы методом окаймления миноров

5.3. Нахождение ранга матрицы с помощью элементарных преобразований

5.4. Понятие обратной матрицы и способы ее нахождения

Алгоритм нахождения обратной матрицы

Нахождение обратной матрицы с помощью элементарных преобразований

6. Системы линейных уравнений

6.1. Основные понятия и определения

6.2. Методы решения систем линейных уравнений

6.2.1. Метод Крамера

6.2.2. Метод обратной матрицы

6.2.3. Метод Гаусса

Описание метода Гаусса

6.3. Исследование системы линейных уравнений

6.4. Однородные системы линейных уравнений

Свойства решений однородной системы линейных уравнений

Фундаментальный набор решений однородной системы линейных уравнений

7. Арифметическое n-мерное векторное пространство

7.1. Основные понятия

7.2. Линейная зависимость и независимость системы векторов

Свойства линейной зависимости системы векторов

Единичная система векторов

Две теоремы о линейной зависимости

7.3. Базис и ранг системы векторов

Базис пространства Rn

Ранг системы векторов

8. Векторные (линейные) пространства

8.1. Определение векторного пространства над произвольным полем.

Простейшие свойства векторных пространств

Линейная зависимость и независимость системы векторов

8.2. Подпространства. Линейные многообразия

Пересечение и сумма подпространств

Линейные многообразия

8.3. Базис и размерность векторного пространства

8.3.1. Конечномерные векторные пространства

Базис конечномерного векторного пространства

8.3.2. Базисы и размерности подпространств

8.3.3. Координаты вектора относительно данного базиса

8.3.4. Координаты вектора в различных базисах

8.4 Евклидовы векторные пространства

Скалярное произведение в координатах

Метрические понятия

Процесс ортогонализации

Скалярное произведение в ортонормированном базисе

Ортогональное дополнение подпространства

9. Линейные операторы

9.1. Основные понятия и способы задания линейных операторов

Способы задания линейных операторов

9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа

Матрицы линейного оператора в различных базисах

9.3. Подобные матрицы

Свойства отношения подобия матриц

9.4. Действия над линейными операторами

1. Сложение линейных операторов.

Свойства сложения линейных операторов

9.5. Ядро и образ линейного оператора

9.6. Обратимые линейные операторы

9.7. Собственные векторы линейного оператора

9.7.1. Свойства собственных векторов

9.7.2. Характеристический многочлен матрицы

9.7.3. Нахождение собственных векторов линейного оператора

9.7.4. Алгоритм нахождения собственных векторов линейного оператора

9.7.5.Условия, при которых матрица подобна диагональной матрице

10. Жорданова нормальная форма матрицы линейного оператора

10.1. Понятие λ-матрицы

Свойства λ-матрицы

10.2. Жорданова нормальная форма

10.3.Приведение матрицы к жордановой (нормальной) форме

Алгоритм приведения матрицы a к жордановой форме

11. Билинейные и квадратичные формы

11.1. Билинейные формы

Свойства билинейных форм

Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы

11.2. Квадратичные формы

Приведение квадратичной формы к каноническому виду

Закон инерции квадратичных форм

Классификация квадратичных форм

Необходимое и достаточное условие знакоопределенности квадратичной формы

Необходимое и достаточное условие знакопеременности квадратичной формы

Необходимое и достаточное условие квазизнакопеременности квадратичной формы

Критерий Сильвестра знакоопределенности квадратичной формы

Заключение

Библиографический список

Линейная алгебра

156961, Г. Кострома, ул. 1 Мая, 14

Получаем z2 = –3i = r(cos + isin) = 3(cos + isin).

в) z3 = –8  a = –8, b = 0. Найдем модуль и аргумент данного числа: r =  =  = 8; т. к. a = –8 < 0, то  =  +  = =  +  =  +  = 0 +  = .

Тогда z3 = –8 = r(cos + isin) = 8(cos + isin).

г) z4 = –2(cos – isin) = –2cos + 2isina = –2cos,b = 2sin.Найдем модуль и аргумент данного числа: r =  =  = 2; т. к. a = –2cos< 0, то  =  +  =  +  = –+  = –+  =.

Тогда z4 = –2(cos – isin) = r(cos + isin) = 2(cos + isin).



Действия над комплексными числами в тригонометрической форме

Сложение и вычитание удобнее производить над комплексными числами в алгебраической форме, а умножение и деление – в тригонометрической форме.

1. Умножений. Пусть даны два комплексных числа, записанных в тригонометрической форме: z1 = r1(cos1 + isin1) z2 = r2(cos2 + isin2).

z1z2 = r1r2(cos1cos2 – sin1sin2) + i(cos1sin2 + sin1cos2) = = r1r2(cos(1 + 2) + isin(1 + 2)).

Итак, модуль |z1z2| = r1r2, аргумент arg(z1z2) = arg z1 + arg z2.

Пример 1.13. Для z1 = 2(cos + isin) и z2 = 3(cos + isin) найти их произведение z1z2.

Решение. Применяем формулу для нахождения произведения двух комплексных чисел, записанных в тригонометрической форме. z1z2 = 23(cos( + ) + isin( + )) = 6(cos + isin) – тригонометрическая форма произведения чисел z1 и z2 или в алгебраической форме z1z2 = 6i.

2. Деление. ===


=

( cos(1 – 2) + isin(1 – 2))

Итак, модуль || = , аргумент arg() = arg z1 – arg z2.

Пример 1.14. Для z1 = 10(cos45 + isin45) и z2 = 5(cos60 + isin60) найти их частное от деления .

Решение.

(cos(45 – 60) + isin(45 – 60)) = 2(cos(–15) + isin(–15)) – тригонометрическая форма частного чисел z1 и z2. Заметим, что если данное выражение записать в виде равносильного выражения 2(cos15 – isin15), то это не будет уже тригонометрической формой записи комплексного числа.

3. Возведение в степень.

Если z = r(cos + isin), то zn = rn(cos(n) + isin(n)), где n  Z. Данная формула называется формулой Муавра9.

Пример 1.15. Для z = – i, найти z4.

Решение. Воспользуемся формулой Муавра, но для начала надо это комплексное число записать в тригонометрической форме. В примере 1.12 мы это уже находили z = – i = 2(cos + isin). Тогда z4 = (– i)4 = (2(cos + isin))4 = 24(cos + isin) =  = 16(cos + isin) – тригонометрическая форма результата возведения в четвертую степень данного комплексного числа. Найдем также и алгебраическую форму записи числа z4. z4 = 16(cos + isin) = 16(cos – isin) = 16( – i) =  = –8 – 8i.


4. Извлечение корня n-ой степени.

Можно показать, что каждое комплексное число, отличное от нуля, имеет ровно n корней n-й степени.

Если z = r(cos + isin), то

=

(cos + isin), гдеk = 0, 1, …, n – 1.

Пример 1.16. Найти .

Решение. Пусть z = 16, найдем сначала тригонометрическую форму данного комплексного числа. Имеем z = 16  a = 16, b = 0  r = == 16;т. к. a = 16 > 0, то  =  = =  == 0.Тогда z = 16 = r(cos + isin) = 16(cos0 + isin0).

Применяем формулу для нахождения корня n-ой степени.

==(cos + isin) =

= 2(cos + isin) ,где k = 0, 1, 2, 3. Найдем все четыре корня:

k = 0  0 = 2(cos + isin) = 2 (cos0 + isin0) = 2,

k = 1  1 = 2(cos + isin) = 2(cos + isin) = 2(0 +i1) = 2i,