ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3428
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
Действие инсулина на белковый обмен
1 повышение проницаемости мембран для аминокислот, 2 усиление синтеза иРНК, 3 активация в печени синтеза аминокислот, 4 повышение активности ферментов синтеза белков, 5 торможение активности ферментов расщепляющих белки
Влияние инсулина на жировой обмен
1 стимуляция синтеза свободных жирных кислот из глюкозы, 2 стимуляция синтеза триглицеридов , 3 активация окисления кетоновых тел в печени, 4 подавление распада жира
Регуляция инкреции инсулина
Главным регулятором является глюкоза, активирующая в бета –клетках аденилатциклазы, что в конечном итоги приводит к выбросу инсулина из гранул бета- клеток в кровь. Вегетативная нервная система – парасимпатическая и ацетилхолин- стимулируют выброс инсулина в кровь, симпатическая и норадреналин- тормозят этот процесс.
При недостатке инсулина в организме развивается сахарный диабет. Эффекты глюкагона
1. Усиливает гликогенолиз в печени и мышцах,2. Способствует глюконеогенезу.
3. Гипергликемия,4. Активирует липолиз/ лизис/, 5. Подавляет синтез жира. 6. Увеличивает систез кетоновых тел в печени, 7.Угнетает их окисление, 8.Стимулирует катоболизм/распад/ белков в тканях, прежде всего в печени, 9.Увеличивает синтез мочевины
Увеличение глюкозы в крови тормозит выделение гормона, уменьшение- стимулирует выброс его в кровь, Симпатическая нервная система и катехоламины стимулируют выброс глюкогона в кровь, а парасимпатическая-тормозит.
ИНСУЛИНОВЫЙ РЕЦЕПТОР
Главную роль в формировании эффектов инсулина играет фосфорилирование внутриклеточных белков- субстратов инсулинового рецептора (IRS), основным из которых является IRS-1.
Рецептор к инсулину обладает тирозинкиназной активностью. Он состоит из двух α-субъединиц и двух β- субъединиц, которые связаны между собой дисульфидными связями и нековалентными взаимодействиями. На поверхности мембраны находятся α-субъединицы с доменом для связывания с инсулином, β-субъединицы пронизывают бислой мембраны и не взаимодействуют непосредственно с инсулином.
Каталитический центр тирозинкиназной активности находится на внутриклеточном домене находится β- субъединиц.
Взаимодействие инсулина с α-субъединицами рецептора приводит к фосфорилированию β-субъединиц рецептора, в таком состоянии они способны фосфорилировать другие внутриклеточные белки, изменяя тем самым их функциональную активность.
Фосфорилирование ИРФ-1 повышает активность этого белка и позволяет ему активировать различные цитозольные белки - ферменты.
Это проводит к активации нескольких сигнальных путей и каскадов специфических протеинкиназ (фосфолипаза Ср, Ras-белок, Raf-1 протеинкиназа, митогенактивируемые про-теинкиназы (МАПКК, МАПК), фосфолипаза А2), вызывает фосфорилирование ферментов, факторов транскрипции (ПСАТ), обеспечивая многообразие эффектов инсулина.
Эти процессы осуществляют каскадно.
В настоящее время установлено, что один из цитозоль-ных белков присоединяется к уже фосфорилированному рецептору инсулина. Образовавшийся комплекс взаимодействует с Ras-белком.
Активированный R-белок активирует протеинкиназу Raf-1.
Эта протеинкиназа активирует протеинкиназу МАПКК, МАПК, что в конечном счете вызывает длительные эффекты инсулина через активацию ПСАТ.
Таким образом, инсулин реализует свое действие через различные пути внутриклеточного проведения сигнала. Именно это и обеспечивает многообразие эффектов инсулина.
Рецепторы к глюкогону.
Рецепторы к глюкогону находятся в цитоплазматиче-ских мембранах клеток печени, мышц. Они (рецепторы к глюкогону) ассоциированы с G-белком.
При формировании комплекса глюкогон-рецептор субъединица Gas взаимодействует с аденилатциклазой и активирует ее.
Активация аденилатциклазы приводит к увеличению содержания цАМФ в цитозоле, который в свою очередь активирует протеинкиназу А. Она (протеинкиназа А) активирует комплекс внутриклеточных ферментов, обеспечивающих реализацию эффектов глюкогона.
40. Женские половые железы…
Половые гормоны вырабатываются в гонадах - половых железах:
у мужчин - в семенниках, у женщин - в яичниках. Гонады являются железами смешанной секреции. Половые гормоны необходимы для полового созревания и развития вторичных половых признаков. половые гормоны различаются по химическому строению:
-
Стероидные гормоны: а) Андрогены - тестостерон, андростерон, б) Эстрогены - эстрон, эстриол, эстрадиол, в) Прогестерон -
Пептидные гормоны: а) мужские – ингибин, б) женские - релаксин
В норме в организме обеих полов образуются и мужские и женские половые гормоны.
Эстрогены в женском организме в значительных количествах вырабатываютя клетками гранулеза фоликулов/ у мужчин в незначительном количестве-клетками Сертоли/, представлены в основном эстрадиолом, в меньшем количестве синтезируется эстрон. Они вызывают следующие физиологические эффекты: активирует синтез РНК, обеспечивают процессы половой дифференцировки в эмбриональном периоде, половое созревание, развитие первичных и вторичных женских половых признаков, установление женского полового цикла, обеспечивает рост мышцы и железистого эпителия матки, развитие молочных желез, обладают более слабым анаболическим действием, чем андрогены, подавляют резорбцию костной ткани, тормозят анаболический эффект андрогенов.
Эстрогены участвуют 1) в формировании полового поведения, 2) в овогенезе,3) в процессе оплодотворения и имплантации оплодотворенной яйцеклетки в слизистую матки, 4) в развитии и дифференцировке
плода/материнские эстрогены/, 5) в развитии родового акта
Прогестерон- вырабатывается клетками желтого тела/немного клетками гранулезы/- является гормоном сохранения беременности/гестагеном/: ослабляет готовность мускулатуры матки к сокращению, стимулирует овуляцию, тормозит пролиферацию эндометрия, необходим для создания баланса между возбуждением и
торможением в ЦНС, препятствует развитию депрессии, раздражительности и плаксивости, которые могут развиться при недостаточности ПГ
Пептидные половые гормоны. Релаксин - продуцируется клетками желтого тела, в матке. Его эффект заключается в расслаблении связок малого таза. Его продукция усиливается в период родов. Ингибин - угнетает сперматогенез при длительном воздержании.
Эндокринная функция плаценты. В плаценте из эстрона образуется эстриол, кроме того плацента синтезирует прогестерон, которые выполняют присущие им функции/см. половые гормоны/ а так же хорионический гонадотропин, который участвует 1.В регуляции дифференцировки и развития плода, также влияет на организм матери, вызывая: Задержку воды и солей. Усиление секреции вазопрессина /задняя доля гипофиза/. Активацию механизмов иммунитета.
Механизм действия:
Эстрогены являются стероидными гормонами. Они обладают выраженным геномным действием.
Эстрогены влияют на процесс транскрипции и, как следствие, активируют синтез более 50 белков. Эти белки обеспечивают основные биологические функции эстрогенов, реализацию репродуктивных функций женского организма.
За счет геномного влияния эстрогены оказывают на организм анаболическое действие, которое хотя и значительно менее выражено, чем таковое у андрогенов, но играет существенное значение.
Негеномное действие эстрогенов проявляется в торможении активности ферментов катаболизма, что приводит к задержке азота, воды и солей в организме.
Эстрогены способны опосредованно активировать NО-синтазу, что приводит к внутриклеточному образованию оксида азота.
Они оказывают выраженное дилятаторное действие на гладкую мускулатуру кровеносных сосудов. Прогестерон обладает геномым действием, влияя на транскрипцию и, как следствие, на синтез белков, действие которых обеспечивает основной диапазон действия этого гормона.