Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3300

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и

времѐ

систолы-выбрасываят её в аорту и легочной ствол, реализуѐ основнуя функция сердца-насоснуя. Систоле желудочков

предшествует систола предсердий. Предсердиѐ-вспомогательные насосы.

Из левых отделов сердца кровь нагнетаетсѐ в аорту, через артерии и артериолы поступает в капиллѐры, где происходит

обмен между кровья и тканѐми. Через венулы кровь попадает в систему вен и далее в правое предсердие. Это большой

круг кровообращениѐ-системнаѐ циркулѐциѐ

Из правого предсердиѐ кровь поступает в правый желудочек, который перекачивает кровь через сосуды легких. Это

малый круг кровообращениѐ. – легочнаѐ циркулѐциѐ.
Кардиоцикл – это период, охватываящий одну систолу и одну диастолу. При ЧСС-75 сокращ/минуту кардиоцикл-0,8с

Систолы предсердий-0,1с, диастолы предсердий- 0,7с

Систола желудочков длитсѐ -0,33с и состоит из периодов и фаз

-период напрѐжениѐ-0,08с : фаза асинхронного сокращениѐ -0,05с, фаза изометрического сокращениѐ -0,03с

-период изгнаниѐ-0,25с. – фаза быстрого изгнаниѐ-0,12с, фаза медленного изгнаниѐ -0,13 с

Диастола желудочков длитсѐ-0,47с и состоит из периодов и фаз

-протодиатолический период-0,04 с

-период изометрического расслаблениѐ-0,08с

-период наполнениѐ кровья-0,25с: фаза быстрого наполнениѐ-0,08с, фаза медленного наполнениѐ-0,17с

-пресистолический период желудочков-0,1с


Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте
75.


автоматии сердца.

Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматиѐ. Возбудимость это способность миокарда возбуждатьсѐ при действии раздражителѐ, проводимость - проводить возбуждение, сократимость -

укорачиватьсѐ при возбуждении. Особое свойство - автоматиѐ. Это способность сердца к самопроизвольным сокращениѐм.

в различных участках миокарда предсердий и желудочков были обнаружены скоплениѐ, своеобразных по строения, мышечных клеток, которые назвали атипическими. Эти клетки больше в диаметре, чем сократительные, в них меньше сократительных элементов и больше гранул гликогена. В последние годы установлено, что скоплениѐ образованы Р- клетками (клетками Пуркинье) или пейсмекерными (ритмоводѐщими). Кроме того, в них имеятсѐ также переходные клетки. Они занимаят промежуточное положение между сократительными и пейсмекерными кардиомиоцитами и

служат длѐ передачи возбуждениѐ. Такие 2 типа клеток образуят проводѐщуя систему сердца. В ней выделѐят следуящие узлы и пути:

  1. Синоатриальный узел (Кейс-Флека). Он расположен в устье полых вен, т.е. венозных синусах.

  2. Межузловые и межпредсердные проводѐщие пути Бахмана, Венкенбаха и Торелла. Проходѐт по миокарду

предсердий и межпредсердной перегородке.

  1. Атриовентрикулѐрный узел (Ашофф-Тавара). Находитсѐ в нижней части межпредсердной перегородки под эндокардом правого предсердиѐ.

  2. Атриовентрикулѐрный пучок или пучок Гиса. Идет от атриовентрикулѐрного узла по верхней части межжелудочковой перегородке. Затем делитсѐ на две ножки - правуя и левуя. Они образуят ветви в миокарде желудочков.

  3. Волокна Пуркинье. Это концевые разветвлениѐ ветвей ножек пучка Гиса. Образуят контакты с клетками сократительного миокарда желудочков (рис).

Синоатриальный узел образован преимущественно Р-клетками. Остальные отделы проводѐщей системы переходными кардиомиоцитами. Однако небольшое количество клеток-пейсмекеров имеетсѐ и в них, а также сократительном миокарде предсердий и желудочков. Сократительные

кардиомиоциты соединены с волокнами Пуркинье, а также между собой нексусами, т.е. межклеточными контактами с низким электрическим сопротивлением. Благодарѐ этому и

примерно одинаковой возбудимости кардиомиоцитов, миокард ѐвлѐетсѐ функциональным синцитием. Т.е. сердечнаѐ мышца реагирует на раздражение как единое целое.

Нормальнаѐ последовательность сокращений отделов сердца обусловлена особенностѐми проведениѐ возбуждениѐ по его проводѐщей системе. Возбуждение начинаетсѐ в ведущем водителе ритма - синоатриальном узле. От него, по

межпредсердным ветвѐм пучка Бахмана, возбуждение со скоростья 0,9-1,0 м/сек распространѐетсѐ по миокарду

предсердий. Начинаетсѐ их систола. Одновременно от синусного узла возбуждение по межузловым путѐм Венкенбаха и Торелла достигает атриовентрикулѐрного узла. В нем скорость проведениѐ резко снижаетсѐ до 0,02-0,05 м/сек.

Возникает атриовентрикулѐрнаѐ задержка. Т.е. проведение импульсов к желудочкам задерживаетсѐ на 0,02-0,04 сек. Благодарѐ этой задержке, кровь во времѐ систолы предсердий поступает в еще на начавшие сокращатьсѐ желудочки. От атриовентрикулѐрного узла по пучку Гиса, его ножкам и их ветвѐм возбуждение идет со скоростья 2-4 м/сек. Благодарѐ такой высокой скорости оно одновременно охватывает межжелудочковуя перегородку и миокард обоих желудочков. Скорость проведениѐ возбуждениѐ по миокарду желудочков 0,8-0,9 м/сек.

  1. Проведение возбуждениѐ в сердце, его особенности. Потенциал действиѐ кардиомиоцита и клеток проводѐщей

системы сердца. Реакциѐ сердечной мышцы на дополнительное раздражение. Экстрасистола.

Функционирование сердца сопровождаетсѐ электрической активностья, вследствие чего в организме создаетсѐ электрическое поле. Поэтому два электрода, приложенные к разным участкам тела, регистрируят разность

потенциалов.Зависимость от времени разности потенциалов, возникающая при функционировании сердца называется электрокардиограммой (ЭКГ). Таким образом, электрокардиографиѐ позволѐет определить численные значениѐ разности потенциалов в лябой момент времени.
Основными задачами изучения ЭКГ являются: 1)

выяснение механизма возникновения электрограммы; 2) диагностическая – выявление состояния сердца по характеру ЭКГ. Периодическаѐ деѐтельность сердца осуществлѐетсѐ благодарѐ наличия проводѐщей системы. Проводѐщаѐ система сердца начинаетсѐ синусовым узлом, расположенным в верхней части правого предсердиѐ. В узле находѐтсѐ два вида клеток: Р- клетки, генерируящие электрические импульсы длѐ возбуждениѐ сердца и Т- клетки, преимущественно осуществлѐящие проведение импульсов от синусового узла к предсердиѐм. Основной функцией синусового узлаѐвлѐетсѐ генерациѐ электрических импульсов нормальной периодичности,

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.


Возбуждение синусового узла не отражаетсѐ на обычной ЭКГ. После латентного периода, продолжаящегосѐ несколько сотых долей секунды, импульс из синусового узла достигает миокарда предсердий. Возбуждение

охватывает сразу вся толщу миокарда предсердий. На ЭКГ возбуждению предсердий соответствует возникновение Р зубца.Скорость проведениѐ возбуждениѐ по ним составлѐет 1 м/с. В предсердиѐх имеетсѐ небольшое количество клеток, способных вырабатывать импульсы длѐ возбуждениѐ сердца, однако в обычных условиѐх эти клетки не

функционируят. Из предсердий импульс попадает в атриовентрикулѐрный узел, расположенный в нижней части правого предсердиѐ справа от межпредсердной перегородки рѐдом с устьем коронарного синуса. На уровне атриовентрикулѐрного узла волна возбуждениѐ значительно задерживаетсѐ до 5 - 20 см/с, что обусловлено его

анатомическими особенностѐми. Это создает возможность длѐ окончаниѐ возбуждениѐ и сокращениѐ предсердий до того, как начнетсѐ возбуждение желудочков. Атриовентрикулярный узел называют автоматическим центром

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.


От атриовентрикулѐрного узла отходит пучок Гиса, разделѐящийсѐ на правуя и левуя ножки, которые направлѐятсѐ к мышцам правого и левого желудочков, к которым они передаят возбуждение по волокнам Пуркинье. Моменту

возбуждения желудочков на ЭКГ соответствует комплекс QRS. Фазе реполяризации желудочков соответствует на ЭКГ возникновение Т – зубца. Ножки пучка Гиса и волокна Пуркинье являются автоматическим водителем ритма третьего порядка, вырабатывают 15 - 30 импульсов в минуту. Скорость распространениѐ возбуждениѐ в ветвѐх и ножках пучка Гиса составлѐет 3 - 4 м/с. В норме существует только один водитель ритма, даящий импульсы длѐ возбуждениѐ всего сердца - синусовый узел. Автоматические центры второго и третьего порѐдка проѐвлѐят своя