Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3451

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и

Интерфероны.


Система интерферона (ИФН) - важнейший фактор неспецифической защиты организма человека. Различают интерфероны I типа: α-интерферон, β-интерферон, и интерферон II типа γ-интерферон.

α-интерферон синтезируется лейкоцитами периферической крови и макрофагами, а β-интерферон - фибробластами, а также NK-клетками.

Эффекты α- и β-интерферонов не имеют специфичности.

γ-интерферон (иммунный интерферон) является продуктом стимуляции Т-лимфоцитов и не относится к системе врожденного иммунитета, а участвует в формировании приобретенного иммунитета.

Кроме того, при развитии иммунного ответа на действие чужеродного антигена Т- и В-лимфоциты продуцируют альфа- и бета-интерферон.

Интерфероны обладают рядом биологических эффектов:

  • противовирусным;

  • антипролиферативным (противоопухлевым);

  • антибактериальным.

С-реактивный белок.


Связывается с поверхностью антигенов. Выступает маркером для системы комплимента и фагоцитов (опсонизация).
  1. Система комплимента: система белков, разрушающая целостность мембран клеток.


Система комплимента выполняет ряд функций:

  • опсонизацию антигенов (маркировку антигенов);

  • активацию макрофагов, базофилов;

  • цитотоксическую (литическую).

Это семейство более 20 протеаз, образуют два сходных ферментных каскада, которые активируются:

  • «классическим» путем, иммуноглобулинами (IgG, IgM). При этом активируются все 9 компонентов (С1- С9) системы комплимента. В естественных спонтанной активации С1 препятствует С1-ингибитор;

  • «альтернативным» путем, за счет характерных полисахаридов мембран микроорганизмов, которые активируют компонент СЗ, взаимодействующий с компонентами В и D при участии компонента Р.

На конечном этапе классического и альтернативного путей активации системы комплимента образуется атакую- щий мембрану комплекс или мембранноповреждающий комплекс (С5-С9).

За счет компонента С5 комплекс прикрепляется (адгезия) к мембране клетки-мишени (поверхности микробов, клетками, инфицированными вирусами).


Литическая (растворяющая) часть комплекса С6-С9 (активированные протеазы) вызывает появление в мембранах каналов. Это приводит к осмотическому разрушению мембраны биологического объекта, а значит и самого объекта.

Связываясь с антигеном, отдельных компонентов системы комплимента является маркером для фагоцитов (опсонизация), которая ускоряет процессы фагоцитоза антигена.

Продукты расщепления некоторых компонентов системы комплимента:

  1. выступают как хемотаксические факторы;

  2. индуцируют адгезию нейтрофилов у эндотелия, что создает необходимые условия для их выхода из крови в ткань;

  3. активируют образование в нейтрофилах реактивных метаболитов кислорода (перекись водорода, пероксиданионы, гидроксилрадикалы);

  4. активируют секреторную функцию нейтрофилов;

  5. вызывают дегрануляцию базофилов, освобождение гистамина;

  6. участвуют в опсонизации антигенов;

  7. играют важную роль в формировании специфической иммунной реакции.
  1. Гранулоциты.


К ним принадлежат все гранулоциты: полиморфно-ядерные нейтрофилы, эозинофилы, базофилы (тучные клетки, таким термином обозначают клетки, перешедшие в ткань).

  1. Клетки макрофагально-моноцитарной системы. Моноциты, тканевые макрофаги, альвеолярные, перитониальные макрофаги, остеокласты, дендритные клетки и др.

Важнейшей функцией полиморфно-ядерных нейтрофилов и клеток макрофагально-моноцитарной системы является фагоцитоз.

Активаторами неспецифического (конституционального) фагоцитоза могут выступать бактериальные продукты, компоненты системы комплимента, многие цитокины, гистамин и др.

Неспецифический фагоцитоз


Процесс поглощения фагоцитами микроорганизмов, других клеток, некротизированных фрагментов тканей, чужеродных частиц. Если в фагоцитах происходит полное или неполное внутриклеточное переваривание объекта, то процесс обозначается терминами: завершенный фагоцитоз или незавершенный фагоцитоз.

В процессе фагоцитоза фагоциты выполняют не только защитные (поглощение, переваривание), но и дренажные функции (удаление поврежденных структур).

Фазы фагоцитоза


  1. Хемотаксис.

Миграция клеток крови в ткань происходит за счет хемотаксиса, т.е. передвижения клеток, осуществляющих фагоцитоз по направлению места действия.

Факторами, определяющими вектор передвижения этих клеток, выступают хемотаксически активные вещества. К ним относятся некоторые из простагландинов и лейкотриенов, ряд компонентов системы комплимента, а также специальная группа веществ, называемая хемокинами: лимфотак-тин, выделяемый NK-клетками, моноцитарныс хемоаттрактные белки, эотаксины, интерлейкин-8, выделяемый нейтрофилами, всего более 30 веществ.

Важную роль в развитии этого процесса играет гистамин, который существенно увеличивает адгезивность эндотелия в месте действия.

На поверхности эндотелия появляются дополнительные адгезивные молекулы (Р-селектины, L-селектины, FAT, Ig-подобные белки), на которых адгезируются (прилипают) нейтрофилы.

Фиксация нейтрофилов адгезивными молекулами на поверхности эндотелия приводит к их активации, которая проявляется в увеличении на поверхности нейтрофилов сильно адгезивных белков р2-интегринов, которые до активации находились в специальных везикулах в нейтрофиле. Эти процессы значительно усиливают процессы адгезии нейтрофилов.

Повышение адгезивности эндотелия по отношению к нейтрофилам сопровождается существенной мобилизацией нейтрофилов, создает необходимые условия для выхода нейтрофилов из кровеносного русла в ткани.

Параллельно для отдельных нейтрофилов происходит ослабление процессов адгезии за счет интернализации (по- гружения в клетку) Р-селектинов и «слущиванию» (потере селективных доменов клетками эндотелия) L- селектинов.


В ряде случаев (при специфическом фагоцитозе) гистамин, взаимодействуя с Н1 гистаминовыми рецепторами, ак- тивирует фосфолипазу Сβ, которая в свою очередь катализирует ДИД2 с образованием ИФ3 и ДАГ.

ИФ3 активирует кальциевые каналы цитоплазматической мембраны и мембраны эндоплазматического ретикулума, что приводит к увеличению кальция в цитозоле сосудистого эндотелия.

Увеличение в цитозоле ионов кальция сопровождается существенными изменениями в клетках эндотелия: изменяется форма клеток, уменьшается их поперечный размер, кроме того, увеличивается вертикальный размер, такое изменение объема связано с влиянием кальция на внутриклеточные сократительные элементы и цитоскелет.

В результате таких изменений увеличивается размер межклеточных щелей в сосудистом эндотелии (таким обра- зом гистамин увеличивает проницаемость микрососудов для воды при различных физиологических реакциях). Кальций опосредованно активирует образование в эндотелии простациклина (PG-I2) и NO (оксида азота), которые, проникая в гладкомышечные клетки кровеносных микрососудов, вызывают их расслабление. Это приводит к расширению кровеносных сосудов, что также сопровождается увеличением межклеточных щелей в эндотелии.

Наличие увеличенных межклеточных щелей в сосудистом эндотелии и снижении адгезии с эпителиоцитами позволяет погрузиться в них псевдоподиям нейтрофила, которые, выделяя протеазы, осуществляют локальный протеолиз ба-зальной мембраны. Эти процессы позволяют нейтрофилу выйти в межклеточное пространство ткани, достигнуть за счет хемотаксиса места действия и превратиться в фагоцит.
  1. Прикрепление чужеродного объекта к фагоциту.


За счет адгезивных белков фагоцита и микроорганизмов возникает прикрепление объекта к фагоциту. Быстрее процесс прилипания идет, если предварительно произошла опсонизация антигена компонентом СЗ системы комплимента или антителами, так как мембраны фагоцитов имеют соответствующие мембранные рецепторы (Fc, C3b), которые опознают объект как чужой.
  1. Поглощение.


После связывания объекта фагоцит за счет псевдоподии окружает объект, и он как бы погружается в цитозоль в виде образовавшейся фагосомы.
  1. 1   ...   24   25   26   27   28   29   30   31   ...   193

Лизис.


Фагосома сливается с лизосомой, образуя фаголизосому. Лизосомальные ферменты активны только в кислой среде.

В лизосоме имеются протеазы, пептидазы, оксидазы, нуклеазы, липазы, способные разрушать оболочки микробов

Кроме того, фагоциты продуцируют реактивные метаболиты кислорода (перекись водорода, пероксидаиионы, гид-роксилрадикалы).

Перечисленные выше факторы повреждают мембраны бактерий и тем самым обеспечивают оптимальные условия Для действия лизосомальных ферментов. В фаголизосоме происходит лизис чужеродных объектов.

Если объект велик для фагоцитоза (паразиты), то в действие вступают эозинофилы и базофилы. Эозинофилы спо- собны образовывать цитотоксический белок дефенсин, который способен вызывать в мембране объектов образование дополнительных ионных каналов, которые нарушают ионную асимметрию и, как следствие, осмотический «шок» и гибель объекта.

Базофилы (тучные клетки в тканях) выделяют хемотаксические факторы для эозинофилов. Эти хемотаксические факторы стимулируют выход эозинофилов из кровеносного русла в место действия, а также при дегрануляции выделяют гистамин, который, как было сказано выше, существенно изменяет проницаемость сосудистой стенки для жидкости.

Секреторная функция гранулоцитов и клеток макро-фагально-моноцитарной системы.

Нейтрофилы секретируют цитотоксические факторы, ферменты, активирующие биологически активные системы (калликреин-кининовая, свертывающая и др.), БАВ, активирующие предшественники медиаторов воспаления.

Эозинофилы выделяют цитотоксический белок - дефенсин, лейкотриен С4, гистаминазу.

Они могут продуцировать реактивные метаболиты кислорода (перекись водорода, пероксиданионы, гидроксилрадикалы), которые способны разрушать оболочку паразитов.

Базофилы выделяют гистамин, факторы хемотаксиса нейтрофилов и эозинофилов, анафилаксии.

Макрофаги способны секретировать большое количество цитокинов (факторы пролиферации и дифференцировки