Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3409

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и

).

Методы исследования пищеварительного тракта :

XVIII век - начало формирования научных методов исследования пищеварительного тракта и его функций.

Все методы подразделяются на:

  1. Острые методы :

Характерная особенностьострыхэкспериментов(результат - быстро (+), как правило - однократно, условия далеки от физиологических (-)).

а) вивисекционный метод (прижизненное вскрытие );

б) метод изоляции органов или участков органов (перфузия питатательными растворами - чувствительность к БАВ);

в) методы канюлирования выводных протоков пищеварительных желез.

  1. Хронические методы исследования разработаны И.П. Павловым (Нобелевскую премию - за исследования в области пищеварения). В его лаборатории выполнялись операции, которые делали органы пищеварения доступными для длительного наблюдения.

Особенности хронических методов(проводятся, когда животное выздоравливает после операции, в условиях, приближенных к естественным; результат - многократно и в течение длительного отрезка времени(+)).

Методы изучения секреторной функции пищеварительного тракта в эксперименте:


  1. Метод хронических фистул (искусственно созданное сообщение между полостью органа и внешней средой).

  2. Методы изоляции органов или участков органов.3. Комбинированные методы изучения секреторной функции

Методы изучения секреторной функции у человека :

1. Зондирование тонким и толстым зондом (исследование содержимого желудка и 12-типерстной кишки).2. Радиотелеметрический метод (датчик определяет рН и активность ферментов).

Методы изучения моторной функции в эксперименте

  1. Острые вивисекционные.

  2. Методы выведения участков желудочно-кишечного тракта под кожу.

  3. Баллоно-кимографический метод (через фистулу - баллон; сейчас - тензодатчики - более тонкая регистрация изменения давления

Изучение моторики у человека:

  1. Рентгенографический метод (рентгеноконтрастные вещества - состояние слизистой, контуры стенок, моторика, эвакуация).

  2. электрогастрография. (ЭГГ)

  3. Фиброгастроскопия (оценка состояния слизистой, моторика, биопсия с гистологическим исследованием).


Методы изучения всасывания в эксперименте :

  1. Метод Гейденгайна (всасывание на изолированном участке кишечника).

  2. Ангиостомия (по И.П.П.) - исследование притекающей и оттекающей крови в момент пищевой нагрузки.

Методы изучения всасывания у человека.


  1. По скорости возникновения фармакологического эффекта (никотиновая кислота - покраснение кожи лица).

  2. Радиоизотопный метод (меченые вещества переходят из кишечника в кровь).

Изучение экскреторной функции пищеварительного тракта.

Экскреторную функцию изучают по количеству какого-либо вещества в содержимом различных отделов желудочно-кишечного тракта через определенные интервалы времени после введения этого вещества в кровь. Типы пищеварения (от происхождения гидролиз) :

  1. Аутолитическое - за счет ферментов, находящихся в пищевых продуктах растительного и животного происхождения.

  2. Симбионтное - ферменты вырабатываются бактериями и простейшими данного макроорганизма;

  3. Собственное - за счет ферментов, синтезируемых пищеварительным трактом:

а) Внутриклеточное - наиболее древний тип (не клетки выделяют ферменты, а вещество попадает внутрь клетки и там расщепляется ферментами).

б) Внеклеточное (дистантное, полостное) - ферменты выделяются в просвет ЖКТ, действуя на расстоянии; в) Мембранное (пристеночное, контактное) - в слизистом слое и зоне щеточной каймы энтероцитов адсорбированы ферменты (значительно выше скорость гидролиза).

77. Виды моторики пищеварительного тракта…


Моторная функция обеспечивает размельчение, растирание, перемешивание пищевого комка, передвижение пищевых масс по пищеварительному тракту и выведение экскрементов.

Процесс жевания обеспечивается поперечнополосатой мускулатурой, перемешивание и перемещение пищевого комка - гладкой мускулатурой.

Разновидности моторной функции пищеварительного тракта:

  • Произвольная моторика (акт жевания, дефекации).

  • Непроизвольные рефлекторные моторные механизмы (механизмы открытия пилорического и илеоцекального сфинктеров, сфинктера Одди).

  • Автоматия отдельных отделов пищеварительного тракта.

Различают несколько видов таких сокращений: тонус, перистальтика, ритмическая сегментация, маятникообразные

движения.

Физиологические свойства и особенности гладкой мускулатуры пищеварительной трубки


Гладкая мускулатура пищеварительной трубки состоит из гладкомышечных клеток (ГМК). Межклеточные контакты ГМК пищеварительной трубки обеспечивает наличие нексусов. Нексусы - один из типов межклеточных контактов.

ГМК пищеварительной трубки обладают рядом физиологических свойств: возбудимостью, проводимостью и сократимостью.

Особенности возбудимости ГМК пищеварительной трубки:

  1. Возбудимость ГМК пищеварительной трубки ниже, чем у миоцитов поперечно-полосатой мускулатуры (ППМ).

  2. ГМК пищеварительной трубки обладают спонтанной электрической активностью.

  3. Спонтанная электрическая активность (СЭА) ГМК пищеварительной трубки имеет ритмический характер. Спонтанная ритмическая активность ГМК пищеварительной трубки связана с периодической активацией кальциевых каналов ГМК, которая формирует входящий ток ионов Са2+. Это вызывает спонтанное смещение потенциала мембраны от ПП до КУД и формирование ПД. Обычно формируется несколько «пачек» ПД. Различные виды автоматии пищеварительной трубки формируются за счет различных видов СЭА ГМК. СЭА ГМК возникает за счет активации различных типов кальциевых каналов.

Особенности проводимости ГМК пищеварительной трубки:

  1. небольшая скорость проведения возбуждения;

  2. проведение возбуждения через нексусы;

  3. распространение возбуждения на соседние ГМК без декремента (ослабления);

  4. полный охват возбуждением всех элементов гладкомышечной структуры.

Особенности сократимости ГМК пищеварительной трубки. Особенности сократимости ГМК пищеварительной трубки обусловлены особенностью сократительного аппарата ГМК.

Особенности сократительного аппарата ГМК.


  1. Стабильные актиновые нити крепятся к плотным тельцам, которые являются аналогами Z линий в ППМ и располагаются и в цитоплазме, и на внутренней поверхности цито-

плазматической мембраны.

  1. Стабильные толстые миозиновые нити отсутствуют.

  2. Сборка толстых миозиновых нитей происходит только в развитии процесса сокращения.

  3. Сборка толстых миозиновых нитей значительно увеличивает время развития сокращения.

  4. Инициируют сборку толстых миозиновых нитей ионы Са2+.

  5. Тропонин С в ГМК отсутствует.

  6. Роль тропонина С в ГМК выполняет кальмодулин.

  7. Выход ионов кальция в цитоплазму из саркоплазматического ретикулума (СПР) осуществляется через кальциевые каналы, активация кальциевых каналов ГМК осуществляется


ИФ3, который активирует рецепторы к ИФ3 в мембране СПР, ассоциированные с кальциевыми каналами.

  1. Ионы Са2+ инициируют сокращение ГМК, взаимодействуя кальмодулином.

  2. Кальмодулин фосфорилирует киназы ответственные за фос-форилирование легких нитей актина и тяжелых нитей миозина.

  3. Фосфорилирование легких нитей актина и тяжелых нитей миозина, ионы Са2+ активирует их взаимодействие, скольжение их относительно друг друга и, как следствие, укорочение и/или увеличение напряжения ГМК.

  4. При расслаблении тяжелые миозиновые нити разбираются.

  5. При вызванном сокращении или расслаблении ГМК в каскаде активации могут принимать участие протеинкиназы А, С, G. ГМК собраны в пучки. Пучки ГМК формируют слои гладкой мускулатуру пищеварительной трубки:

  • продольный слой гладкой мускулатуры пищеварительной трубки;

  • поперечный (косой) слой гладкой мускулатуры пищеварительной трубки;

  • циркулярный слой гладкой мускулатуры пищеварительной трубки.

Наличие таких слоев гладкой мускулатуры обеспечивает необходимый спектр моторной активности пищевари- тельной трубки.

Виды моторики пищеварительной трубки


  1. Тонус гладкой мускулатуры пищеварительной трубки.

Выделяют:

  • базальный тонус всех гладких мышц пищеварительной трубки;

  • тонические волны, приводящие в соответствие объем химуса и определенного отдела пищеварительной трубки;

  • тоническое сокращение сфинктеров.
  1. Перистальтика гладкой мускулатуры пищеварительной трубки.


Перистальтика обеспечивается сократительной активностью продольного и циркулярного мышечных слоев пищеварительной трубки. Обеспечивает перемешивание пищевого комка и перемещение его по длине пищеварительной трубки. Перистальтическая волна возникает с частотой 3-5 раз в минуту. Направление перистальтики от начала любой части пищеварительной трубки к ее окончанию. Волнообразное сокращение гладкой мускулатуры пищеварительной трубки. Впереди пищевого комка идет волна расслабления (циркулярная мышца расслаблена, продольная сокращена), позади волна сокращения (циркулярная мышца сокращена, продольная расслаблена). В основе лежит спонтанная ритмическая активность ГМК пищеварительной трубки
, обусловленная спонтанной активацией кальциевых каналов L-типа.
  1. Ритмическая сегментация гладкой мускулатуры пищеварительной трубки.


Ритмическая сегментация обеспечивается продольным и поперечным (косым) слоями гладкой мускулатуры пищеварительной трубки. Это «стоячие волны» сокращения продольного и поперечного слоев гладкой мускулатуры, возникающие в определенных отделах пищеварительной трубки с частотой 15-18 раз в минуту. Обеспечивают перемешивание химуса и функциональное отделение (временную частичную изоляцию) определенной части пищеварительной трубки.

  1. Маятникообразные движения гладкой мускулатуры пищеварительной трубки. Маятникообразные движения возникают с частотой 10 раз в минуту. Они обеспечиваются своеобразными сокращениями продольного слоя мускулатуры, в которых последовательно чередуются сокращения и

расслабления гладкой мускулатуры. За счет маятникообразных движений в пищеварительной трубке происходит эффективное перемешивание химуса.
  1. Антиперистальтика гладкой мускулатуры пищеварительной трубки.


Антиперистальтика в норме характерна только для моторной активности толстого кишечника. В других отделах пищеварительного тракта возникает только при патологических состояниях, когда необходимо срочное опорожнение пищеварительной трубки.
  1. Закрытие и открытие сфинктеров пищеварительной трубки.


В пищеварительной трубке насчитывается 35 сфинктеров. Они выполняют функции частичной или полной изоляции друг от друга различных частей пищеварительной трубки и открытие их при необходимости для естественной эвакуации пищевого комка из выше лежащих в ниже лежащие отделы пищеварительной трубки на различных этапах конвейерной обработки пищи. Полностью изолирующие сфинктеры в закрытом состоянии полностью предотвращают заброс химуса из ниже лежащих в выше лежащие отделы пищеварительной трубки, частично изолирующие сфинктеры не обеспечивают полной изоляции одного отдела пищеварительной трубки и поэтому не исключают частичное перемещение пищи по естественному направлению ее движения (в ниже лежащий отдел) и обратный заброс порции химуса в вышележащий отдел пищеварительной трубки.
Гладкие мышцы пищеварительного тракта относятся к группе унитарных и обладают способностью спонтанного ритмического возбуждения и свойствами синцития. Растяжение гладких мышц вызывает деполяризацию их мембран и мышечное сокращение. Вегетативные нервы, гормоны и парагормоны изменяют частоту и силу этих сокращений в широких пределах. На протяжении пищеварительного тракта имеется несколько водителей ритма его сокращений. Эти водители ритма особенно чувствительны к физиологически активным веществам и получают обильную иннервацию.