ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3414
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
10. Строение биомембран…
Организация всех мембран имеет много общего, они построены по одному и тому же принципу. Основу мембраны составляет липидный бислой (двойной слой амфифильных липидов), которые имеют гидрофильную "головку" и два гидрофобных "хвоста". В липидном слое липидные молекулы пространственно ориентированы, обращены друг к другу гидрофобными "хвостами", головки молекул обращены на наружную и внутреннюю поверхности мембраны.
Липиды мембраны: фосфолипиды, сфинголипиды, гликолипиды, холестерин.
Выполняют, помимо формирования билипидного слоя, другие функции:
-
формируют окружение для мембранных белков (аллостерические активаторы ряда мембранных ферментов); -
являются предшественниками некоторых вторых посредников; -
выполняют "якорную" функцию для некоторых периферических белков.
Среди мембранных белков выделяют:
-
периферические - располагаются на наружной или внутренней поверхностях билипидного слоя; на наружной поверхности к ним относятся рецепторные белки, белки адгезии; на внутренней поверхности - белки систем вторичных посредников, ферменты; -
интегральные - частично погружены в липидный слой. К ним относятся рецепторные белки, белки адгезии; -
трансмембранные - пронизывают всю толщу мембраны, причем некоторые белки проходят через мембрану один раз, а другие - многократно. Этот вид мембранных белков формирует поры, ионные каналы и насосы, белки-переносчики, рецепторные белки. Трансмембранные белки играют ведущую роль во взаимодействии клетки с окружающей средой, обеспечивая рецепцию сигнала, проведение его в клетку, усиления на всех этапах распространения.
В мембране этот тип белков формирует домены (субъединицы), которые обеспечивают выполнение трансмембранными белками важнейших функций.
Основу доменов составляют трансмембранные сегменты, образованные неполярными аминокислотными остатками, закрученными в виде ос-спирали и внемембранные петли
, представляющие полярные области белков, которые могут достаточно далеко выступать за пределы билипидного слоя мембраны (обозначают как внутриклеточные, внеклеточные сегменты), отдельно выделяют СООН- и NН2-терминальные части домена.
Часто просто выделяют трансмембранную, вне- и внутриклеточную части домена - субъединицы. Белки мембраны также делят на:
структурные белки: придают мембране форму, ряд механических свойств (эластичность и т.д.); транспортные белки:
-
формируют транспортные потоки (ионные каналы и насосы, белки-переносчики); -
способствуют созданию трансмембранного потенциала.
белки, обеспечивающие межклеточные взаимодействия:
-
адгезивные белки, связывают клетки друг с другом или с внеклеточными структурами;
белковые структуры, участвующие в образовании специализированных межклеточных контактов (десмосомы, нексусы и т.д.);
белки, непосредственно участвующие в передаче сигналов от одной клетки к другой.
В состав мембраны входят углеводы в виде гликолипидов и гликопротеидов. Они формируют олигосахаридные цепи, которые располагаются на наружной поверхности мембраны.
Свойства мембраны:
-
Самосборка в водном растворе. -
Замыкание (самосшивание, замкнутость). Липидный слой всегда замыкается сам на себя с образованием полностью отграниченных отсеков. Это обеспечивает самосшивание при повреждении мембраны. -
Асимметрия (поперечная) - наружный и внутренний слои мембраны отличаются по составу. -
Жидкостность (подвижность) мембраны. Липиды и белки могут при определенных условиях перемещаться в своем слое:
латеральная подвижность; вращения;
изгибание,
а также переходить в другой слой:
вертикальные перемещения (флип-флоп)
-
Полупроницаемость (избирательная проницаемость, селективность) для конкретных веществ.
Функции мембран
Каждая из мембран в клетке играет свою биологическую роль.
Цитоплазматическая мембрана:
-
отграничивает клетку от окружающей среды; -
осуществляет регуляцию обмена веществ между клеткой и микроокружением (трансмембранный обмен); -
производит распознавание и рецепцию раздражителей; -
принимает участие в образовании межклеточных кон тактов; -
обеспечивает прикрепление клеток к внеклеточному матриксу; -
формирует электрогенез.
Мембраны эндоплазматического ретикулума.
Гладкого эндоплазматического ретикулума участвуют:
-
в синтезе фосфолипидов, стероидов, полисахаридов; -
в инактивации метаболитов; -
в инактивации БАВ; -
в детоксикации ядовитых веществ.
Шероховатого эндоплазматического ретикулума участвуют:
-
в синтезе секреторных, лизосомальных и мембранных белков; -
в транспорте синтезированных белков в другие отделы клетки; -
в прикреплении рибосом.
Мембрана аппарата Гольджи:
-
обеспечивает модификацию белков, синтезированных в эндоплазматическом ретикулуме, предназначенных для секреции и инкреции, включения в мембраны и др.; -
участвует в синтезе фрагментов плазматических мембран, лизосом, секреторных гранул; -
обеспечивает упаковку в везикулы, секреторные гранулы белков, БАВ.
Мембраны митохондрий:
-
мембраны: внутренняя и внешняя.
На внутренней мембране митохондрий локализованы ферменты, участвующие в транспорте электронов и синтезе АТФ (окислительное фосфорилирование).
Внешняя мембрана митохондрий содержит ферменты общего пути катаболизма.
Мембрана лизосомы:
-
отграничивает ферменты гидролазы от цитозоля, предохраняя клетку от автолиза; -
обеспечивает поддержание в лизосоме кислой среды (рН-5,0), необходимой для действия гидролаз; -
осуществляет эндоцитоз (фагоцитоз).
Ядерная мембрана:
-
состоит из внешней и внутренней мембран; -
отграничивает генетический материал (ДНК) от цитозоля; -
имеет поры, позволяющие РНК проникать из ядра в цитоплазму; -
регуляторным белкам - из цитозоля в ядро.
Рецепторная функция мембран, внутриклеточные пути проведения сигнала
Рецепторная функция мембран обеспечивает взаимодействие клетки с микроокружением; участие клетки в реакциях ткани, органа; участие ядра, органелл в формировании реакции клетки на воздействии.
Информационные сигналы, которые воздействуют на цитоплазматическую мембрану и вызывают значимые изменения в деятельности клетки, можно сгруппировать в три группы:
-
Изменение потенциала мембраны. -
Изменение напряжение билипидного слоя мембраны или цитоскелета клетки. -
Сигнальные молекулы (лиганды).
Классификация мембранных рецепторов
По локализации делятся на цитоплазматические и ядерные.
По механизму развития событий рецепторы делятся на ионотропные и метаботропные.
Ионотропные рецепторы относят к быстроотвечающим рецепторам, ответ в течение миллисекунд. Формируются интегральными белками, имеют несколько субъединиц. Содержат субъединицу, имеющую центр связывания для сигнальной молекулы.
Центры связывания для сигнальной молекулы у ионотропных рецепторов делятся на: потенциалзависимые сенсоры;
механозависимые сенсоры;
сенсоры для внеклеточных и внутриклеточных лигандов.
Метаботропные рецепторы - медленноотвечающие (секунды, минуты, часы). Метаботропные рецепторы делятся на две большие группы:
рецепторы, связанные с ионными каналами. Изменение проницаемости ионных каналов реализуется через вторые посредники;
рецепторы, не связанные непосредственно с мембранными каналами. Рецепторы, не связанные непосредственно с мембранными каналами делятся