ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3460
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
Терморецепторы можно разделить на специфические и неспецифические. Первые возбуждаются лишь температурными воздействиями, вторые отвечают и на механическое раздражение. Рецептивные поля большинства терморецепторов локальны. Терморецепторы реагируют на изменение температуры повышением частоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Повышение частоты импульсации пропорционально изменению температуры, причем постоянная импульсация у тепловых рецепторов наблюдается в диапазоне температуры от 20 до 50 °С, а у Холодовых — от 10 до 41 °С. Дифференциальная чувствительность терморецепторов велика: достаточно изменить температуру на 0,2 °С, чтобы вызвать длительные изменения их импульсации.
В некоторых условиях холодовые рецепторы могут быть возбуждены и теплом (выше 45 °С). Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ванну. Важным фактором, определяющим установившуюся активность терморецепторов, связанных с ними центральных структур и ощу- щения человека, является абсолютное значение температуры. В то же время начальная интенсивность температурных ощущений зависит от разницы температуры кожи и температуры действующего раздражителя,
его площади и места приложения. Так, если руку держали в воде температуры 27 °С, то в первый момент при переносе руки в воду, нагретую до 25 °С, она кажется холодной, однако уже через несколько секунд становится возможной истинная оценка абсолютной температуры воды.
- 1 ... 76 77 78 79 80 81 82 83 ... 193
Зрительный анализатор…
Зрительный анализатор включает периферическую часть, проводящие афферентные пути и центральный мозговой аппарат.
Периферическая часть представлена сложным рецептором(глаз), в состав которого входят фоторецепторными клетками. Фоторецепторные клетки расположены в сетчатой оболочке глазного яблока.
Строение и функции оптической системы глаза. На пути к фоторецепторным клеткам световые лучи проходят через несколько прозрачных сред: роговица,, хрусталик, стекловидное тело. Из-за этого происходит преломление световых лучей внутри глаза. Преломляющая сила оптической системы выражается в диоптриях (D). Преломляющая сила для здорового глаза для рассмотрении на далеких расстояниях составляет 59 D, а при рассмотрении близких предметов 70,5 D. Изображение на сетчатке резко уменьшено, перевернуто сверху вниз, справа налево.
Аккомодация. Обеспечивает приспособление глаза к ясному видению предметов, расположенных на различном расстоянии. Достигается изменением кривизны хрусталика, что позволяет изменять его преломляющую силу и фокусировать изображение на сетчатке. При рассмотрении близкого предмета кривизна увеличивается, при рассмотрении дальнего предмета хрусталик уплощается. Хрусталик помещен в прозрачную капсулы, которая исходно растягивается цинновыми связками/это уплощает хрусталик/, сокращение гладких мышц ресничного тела ослабляют натяжение цинновых связок, это увеличивает кривизну хрусталика. Гладкие мышцы ресничного тела имеют парасимпатическую иннервацию. По этому атропин парализует аккомодацию глаза для близких предметов.
Аномалии рефракции.
Если продольная ось глаза слишком длинная/врожденно/, то лучи от далекого объекта фокусируются перед сетчаткой, в стекловидном теле.
Это называется близорукость(миопия). Коррекция- вогнутыми стеклами.
Если продольная ось глаза укорочена/врожденно/, то лучи от дальнего объекта фокусируются за сетчаткой. Это называется дальнозрость (гиперметрия). С возрастом эластичность капсулы хрусталика уменьшается и при натяжении цинновой связки кривизна хрусталика не изменяется, близкие предметы видны плохо
. Это старческая дальнозоркость (пресбиопия). Гиперметрия и пресбиопия корригируются двояковыпуклыми линзами.
Астигматизм/аномалия рефракции/. Обусловлен не строго сферичной поверхностью роговицы, вызывает неодинаковое преломление по разным меридианам глаза. Коррекция- цилиндрическими линзами.
Катаракта-нарушение прозрачности хрусталика.
Зрачок и зрачковый рефлекс.
Зрачок это отверстие в радужной оболочки /от 1,8 мм при максимальном сужении до 7,5 при максимальном расширении/, через него лучи света проходят внутрь глаза. Зрачок повышает четкость изображения, так как пропускает только центральные лучи, устраняя сферическую аберрацию. Зрачок увеличивает глубину резкости. Зрачковый рефлекс. Зрачковый рефлекс на свет. Яркое освещение приводит к сужению зрачка, затемнение – к расширению. Диапазон изменений: максимально площадь зрачка может меняться в 17 раз, в 17 раз может изменяться и световой поток. Это адаптивный механизм.
Зрачковый рефлекс на другие раздражители. Зрачок окружают два вида мышц: радужный сфинктер/кольцевые волокна/, парасимпатическая иннервация и радужный дилятатор /радиальные волокна/,симпатическая иннервация. Ацетилхолин, эзерин- сужение зрачка, адреналин расширение. Боль, гипоксия, положительные и стенические отрицательные эмоции сопровождается расширением зрачков.
Реакция зрачков в норме на свет содружественная, т. е. при увеличении освещения одного зрачка/сужение/ аналогично реагировал и зрачок неосвещенного глаза. При некоторых видах патологии содружественность реакции отсутствует. В некоторых патологических случаях размеры зрачков обеих глаз различны(анизокария). Структура и функции сетчатки.
Сетчатка это внутренняя фоточувствительная оболочка глаза. Это многослойная структура. Здесь расположены два вида вторично - чувствующих фоторецепторов/ палочки и колбочки/ и несколько видов нервных клеток. Возбуждение с фоторецепторов передается на первую нервную клетку сетчатки(биполярный нейрон), с них возбуждение переходит на ганглиозные клетки сетчатки, которые передают нервные импульсы в подкорковые зрительные центры.
Пигментный слой(топика- задний, наружный). Образован одним рядом эндотелия, содержащего много органоидов, большая часть- меланосомы, придающие этому слою черный цвет. Функции пигментного слоя : 1.Экранирующий эффект
. Он поглощает доходящий до него свет, препятствуя его отражению и рассеиванию, что способствует четкости зрительного восприятия. 2. Ресинтез зрительных пигментов. Обеспечивает восстановление пигментов после их обесцвечивания. 3. Постоянное обновление наружных сегментов палочек и колбочек. Обеспечивает фагоцитоз обломков постоянно разрушающихся наружных сегментов. 4.Защита фоторецепторных клеток от светового повреждения. 5. Обеспечение фоторецепторных клеток питательными веществами, кислородам. Фоторецепторный слой не имеет капилляров /аваскуляризирован/.
Связь между пигментными и фоторецепторными клетками слабая. Именно в этом месте происходит отслойка сетчатки, которая на 1-ом этапе приводит к нарушению зрения за счет смещения оптического фокуса изображения, а на 2-ом быстро развивающемся этапе нарушения зрения обусловлены дегенерацией фоторецепторов вследствие метаболических нарушений, так как нарушается связь описанная в пункте 5.
Фоторецепторы. В сетчатке 120 мл. палочек и 6 мл. колбочек. Всего около 130 мл фоторецепторных клеток. Распределение палочек и колбочек в сетчатке неравномерно- в центральной ямке- одни колбочки, по направлению к периферии число колбочек уменьшается, а число палочек возрастает, на периферии – одни палочки. 130 мл. фоторецепторов через биполярные клетки связаны 1 мл. 250 тыс. ганглиозных клеток сетчатки. Фоторецепторы, соединенные с одной ганглиозной клеткой образуют рецептивное поле. Одна ганглиозная клетка суммирует возбуждения с большого количества фоторецепторов. Только в районе центральной ямки одна колбочка через одну биполярную клетку соединена с одной ганглиозной клеткой. Это обеспечивает большое пространственное разрешение при попадании лучей на эту область.
Колбочки функционируют в условиях большой освещенности, они обеспечивают дневное зрение, способны воспринимать волны различной длины, обеспечивают восприятие цвета(цветовое зрение).
Палочки 500 раз более чувствительны к свету, чем колбочки, реагируют только на волны одной длины.
Обеспечивают сумеречное зрение. Ответственны за периферическое зрение(велико при низкой освещенности). Зрительные пигменты. Зрительные пигменты (состоящие из опсина и ретиналя) находятся в наружном сегменте фоторецепторов. В палочках – родопсин, в колбочках - иодопсин, хлораб, эритраб.
Максимум спектр поглощения пигмента палочек 500 нм/нанометров/. Три типа колбочек(сине-, зелено-, красночувствительные), максимум спектра поглощения соответственно 420/425/, 531/435/, 558/570/ нм. Теории цветоощущения
Трехкомпонентная теория/Г. Гельмгольц/. Три типа колбочек. Каждый тип колбочек содержит один из трех зрительных пигментов. Одни воспринимают красный цвет, другие- зеленый, третьи- синий. Сложная интеграция позволяет получать все известные цвета и их оттенки.
Трехэлементная теория./Э. Геринг/. Каждая колбочка содержит все три зрительных пигмента. Идеология такая же.
Нарушение функции палочек /при недостатке витамина А/ - нарушение сумеречного зрения «куриная слепота», человек слепнет в сумерках, днем зрение нормальное. При поражении колбочек развивается светобоязнь- человек слепнет при ярком освещении, при слабом – видит. При глубоком поражении колбочек может развиться полная цветовая слепота- ахромозия.
Частичная цветовая слепота - дальтонизм. Имеет три разновидности: протанопия (красно-слепые)- не видят красный цвет, сине-голубые лучи воспринимаются ими как бесцветные, дейтранопия (зелено-слепые) - не отличают зеленый цвет от темно-красных и голубых цветов, тританопия - не видит синий и фиолетовый цвет. Причина - врожденное отсутствие одного их зрительных пигментов.
Молекулярные основы фоторецепции и ее сопряжение с электрогенезом элементов сетчатки Расшифрованы частично. Понятно, что под воздействием кванта происходит мгновенная (1пс - 1-12 с)
изомеризация хромофорной группы зрительного пигмента -11-цис-ретиналя в транс- ретиналь, это вызывает изменение в белковой части пигмента, она обесцвечивается и переходит в метаформу 11, которая взаимодействует с примембранным белком – трансдуцином, который обменивает, связанный с ним в темноте ГДФ на ГТФ, который активирует другой примембранный белок-фермент фосфодиэстеразу, который снижает концентрацию цАМФ и вызывает избыточное накопление ионов Na+ , гиперполяризацию мембраны фоторецептора, что