ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3371
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота.
Дыхательные газы обмениваются в легких через альвеоло-капиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст., а углекислого газа - 40 мм.рт.ст. Напряжение (термин применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа - 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону.
Кроме того, скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло-капиллярной мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Т.е. он диффундирует в 25 раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давления углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл*мин/мм.pт.cт. У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе
Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде НЬО. Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбгемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находящихся в плазме и эритроцитах.
-
зуба. Основные функции зубов и пародонта.
Комплекс тесно связанных между собой тканей, окружающих и фиксирующих зубы (десны, надкостница, кости альвеолярного отростка, периодонт и покрывающий корень зуба цемент), называются пародонтом.
Функции пародонта. Пародонт выполняет опорно-удерживающую, распределяющую давление, пластическую и трофическую и другие функции.
Пародонт фиксирует зубы в челюсти. На зубы действует сила, как при жевании, так и без жевательной нагрузки, при других функциональных состояниях. Эти силы стараются сместить зубы со своего места. Пародонт переносит действующие на зубы силы на челюстные кости.
Пластическая функция пародонта осуществляется имеющимися в нем клеточными элементами. Так, цементобласты принимают участие в построении вторичного цемента, остеобласты – в образовании кости. Значительно развитая сеть капилляров и нервов пародонта обусловливают его трофическую функцию – питание цемента зуба и стенок альвеолы.
Кроме перечисленных функций, пародонт участвует в росте, прорезывании и смене зубов, а также выполняет барьерную и сенсорную функции.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4
-
Биологическая роль условных рефлексов. Условия их образования. Виды условного торможения и его физиологическое значение.
Условные рефлексы (УР) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их временной связью раздражителя с ответной реакцией, которая образуется в организме при определённых условиях. Свойства условных рефлексов:формируются в течение всей жизни в результате взаимодействия индивида с внешней средой;не отличаются постоянством и без подкрепления могут исчезать;не имеют постоянного рецептивного поля;не имеют постоянной рефлекторной дуги;для возникновения условнорефлекторной реакции не требуется действие специфического раздражителя.УР образуются только при определённом сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание индифферентного или условного раздражителя и подкрепляющего безусловного. Индифферентным называется такой раздражитель, который в естественных условиях не может вызвать данную рефлекторную реакцию, а безусловным - специфический раздражитель, который всегда вызывает возникновение этого рефлекса. Для выработки условных рефлексов необходимы следующие условия:действие условного раздражителя должно предшествовать воздействию безусловного;необходимо многократное сочетание условного и безусловного раздражителей;индифферентный и безусловный раздражители должны иметь сверхпороговую силу;в момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения;ЦНС должна быть в нормальном функциональном состоянии.
Условно-рефлекторная деятельность начинает формироваться сразу после рождения. Плачущего ребенка берут на руки, и он замолкает, делает изучающие движения головой, предвосхищающие кормление. В первое время рефлексы формируются медленно, с трудом. С возрастом развивается концентрация возбуждения, или начинается иррадиация рефлексов. По мере роста и развития, приблизительно со 2—3-й недели, происходит дифференцирование условных рефлексов. У 2—3-месячного ребенка наблюдается довольно выраженное дифференцирование условно-рефлекторной деятельности. И к 6 месяцам у детей возможно образование рефлексов со всех воспринимающих органов. В течение второго года жизни у ребенка еще более совершенствуются механизмы образования условных рефлексов
-
Газообмен в тканях. Парциальное напряжение кислорода и углекислого газа в артериальной, венозной крови и тканевой жидкости.
Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена большое значение имеет величина обменной площади, т.е. количество функционирующих капилляров. В артериальной крови напряжение кислорода 96 мм.рт.ст., в тканевой жидкости около 20 мм.рт.ст., а работающих мышечных клетках близко к 0. Поэтому кислород диффундирует из капилляров в межклеточное пространство, а затем клетки. Для нормального протекания окислительно-восстановительных процессов в митохондриях необходимо, чтобы напряжение кислорода в клетках было не менее 1 мм.рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Ниже ее развивается кислородное голодание тканей. В скелетных мышцах кислород накапливает белок миоглобин, по строению близкий к гемоглобину. Напряжение углекислого газа в артериальной крови 40 мм.рт.ст., в межклеточной жидкости 46 мм.рт.ст., в цитоплазме 60 мм.рт.ст. Поэтому он выходит в кровь. Количество кислорода, которое используется тканями называется коэффициентом его утилизации. В состоянии покоя ткани используют около 40% кислорода или 8-10 об%. Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде НЬО.
Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбгемоглобина, в соединении с глобином, переносится около 5 об%.
-
Методы исследования функционального состояния жевательного аппарата (гнатодинамометрия, электроодонтометрия, электромиография, мастикациография).
Гнатодинамометрия .Исследуют силу жевательной мускулатуры (жевательного давления) с помощью гнатодинамометра, предложенного в 1893 г. Блэком и модифицированного Габером и Тиссенбаумом. Воспринимающие давление зубов площадки гнатодинамометра вводят в рот больного и предлагают максимально сильно сомкнуть зубы. Теоретически сила сокращения жевательных мышц составляет 400 кг, однако на практике она достигает всего 120—150 кг. Эта сила не реализуется человеком во время жевания, так как периодонт зуба приспособлен к меньшей жевательной силе и всякое ее увеличение вызывает боль в периодонте, что ведет к рефлекторному ослаблению напряжения мышц.
Гнатодинамометрическое исследование позволяет оценить прочность сращения отломков и опосредованно — степень интенсивности процессов регенерации, а гнатодинамометр может быть использован в качестве тренировочного аппарата.
Мастикациография .Метод позволяет получить графическое изображение на кимографе жевательных движений нижней челюсти во время приема пищи от момента введения ее в полость рта до момента проглатывания (жевательный период).
Жевательный период состоит из 5 фаз:
1 фаза— состояние покоя;
2 фаза — введение пищи в рот;
3 фаза — начало жевательной функции (адаптация);
4 фаза — основная жевательная функция;
5 фаза — формирование пищевого комка и проглатывание
Все эти фазы записываются самописцем в виде кривой (рис. 1.20). Больному с переломом нижней челюсти дают одинакового размера кусочки пищи возрастающей плотности в зависимости от давности перелома или проведенного метода лечения. Пережевывание длится до проглатывания пищи или ограничивается определенным отрезком времени. По характеру полученной кривой судят о восстановлении фаз жевательной функции в динамике.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 5
-
Гемодинамическая функция сердца. Сердечный цикл и его фазы. Изменение давления в полостях сердца и положение клапанного аппарата в различные фазы сердечного цикла.
Цикл: сист жел включ 2 периода: период напряжения. и период изгнания Период напряжения делится на две фазы: фазу асинхронного сокращения, и фазу изометрического сокращения . В асинхрон сокращ происх сокращ волокон миокарда межжелудочковой перегородки. Затем сокращ синхрониз и охватывает весь миокард. Давл в жел ↑, и атриовентр клапаны закрыв. полулунные закр. изометрического сокращения -мышечные волокна не укорач, но сила их сокращ и давл в полостях жел ↑. Когда оно достигает 120-130 мм рт.ст. в лев и 25-30 мм рт.ст. в прав, откр полулунные клапаны – аортальный и пульмональный. Начин изгнания. и включает фазу быстрого и медленного изгнания. быстрого изгнания дав в жел ↑, чем в соотве сосудах, кровь из них выходит быстро. Но давл в сосудах ↑, выход крови замедляется. начинается диаст жел. Включ протодиастол период (начин расслаб миокарда жел. Давление ↓, чем в аорте и легоч артер, поэтому полулунные закрыв), период изометрич расслабл(все клапаны закр и расслаб происх без измен длины волокон миокарда. Давление в жел↓. Когда =0, открыв атриовентр клапаны.), период наполн (Жел пассив наполн кровью) и пресистолич период.(систола предсердий) Жел закачива дополн кол-во крови. Давление в предсер в систол в лев 8-15 мм рт.ст., а прав 3-8 мм рт.ст. временя от начала протодиастолического периода и до пресистолического -общей паузой( полулун клапаны закр, а атриовентре открыт).