ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3449
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
Процесс механической обработки пищи зубами посредством движения нижней челюсти относительно верхней называется жеванием. Жевательные движения осуществляются сокращениями жевательных и мимических мышц, мышц языка.
При жевании резцы могут развивать давление на пищу 11—25 кГс/см, коренные зубы — 29—90 кГс/см. Акт жевания осуществляется рефлекторно, имеет цепной характер, автоматизированные и волевые компоненты.
В ротовой полости пища в процессе жевания измельчается, смачивается слюной, перемешивается с ней, растворяется (без чего невозможна оценка вкусовых качеств пищи и ее гидролиз). В результате формируется относительно гомогенный ослизненный пищевой комок для глотания.
Регуляция жевания осуществляется рефлекторно. Возбуждение от рецепторов слизистой оболочки рта (механо-, хемо- и терморецепторов) передается по афферентным волокнам II, III ветви тройничного, языкоглоточного, верхнего гортанного нерва и барабанной струны в центр жевания, который находится в продолговатом мозге. Возбуждение от центра к жевательным мышцам передается по эфферентным волокнам тройничного, лицевого и подъязычного нервов. Возбуждение от чувствительных ядер ствола мозга по афферентному пути через специфические ядра таламуса переключается на корковый отдел вкусовой сенсорной системы, где осуществляется анализ и синтез информации, поступающей от рецепторов слизистой оболочки ротовой полости. На уровне коры больших полушарий происходит переключение сенсорных импульсов на эфферентные нейроны, которые по нисходящим путям посылают регулирующие влияния к центру жевания продолговатого мозга.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 8
-
Условия возникновения артериального давления в сосудистой системе. Причины непрерывности тока крови по сосудам. Изменение сопротивления и давления по ходу сосудистого русла (начертить графики).
По функциональному значению в сосудистой системе можно выделить следующие отделы:
1.Компрессионный отдел - аорта и крупные артерии, сосуды эластического типа с упруго-растяжимыми стенками. Указанные сосуды растягиваются поступающей из сердца кровью во время систолы, а во время диастолы спадаются, тем самым поддерживая давление крови и подталкивая её в артериолы и капилляры.
2.Резистивный отдел - артериолы, сосуды с хорошо выраженной мышечной стенкой. Артериолы ввиду малого их диаметра создают основное сопротивление току крови и не дают ей быстро оттекать в дистальные отделы. Это позволяет поддержать артериальное давление на достаточном уровне даже во время диастолы.
3.Обменный отдел - капилляры, где происходит обмен газами, жидкостью и другими веществами между кровью и тканями.
4.Шунтирующие сосуды - артерио-венозные анастомозы, при необходимости обеспечивающие сброс крови из артериальной системы в венозную, минуя капилляры.
5.Ёмкостные сосуды - вены, обладающие большой растяжимостью и содержащие до 80% крови. Обеспечивают венозный возврат крови к сердцу.
Условия создания давления в сосудистой системе.
Рассмотрев функциональное значение различных отделов сосудистого русла, можно сделать вывод об условиях, необходимых для создания и поддержания давления крови и непрерывного кровотока в сосудистой системе. Несмотря на то, что кровь из сердца поступает только во время систолы, давление в системе сохраняется также во время диастолы, и кровь не прерывает своего движения. Этому служит: 1.нагнетательная работа сердца; 2.эластические свойства крупных сосудов - аорты и артерий, и 3.наличие периферического сопротивления.
Н.р-75./35 1г-90/40 3г-95/60 5л-100/65 10л 105/70 15л-115/75
-
Условия образования отрицательного давления в плевральной полости, изменение его величины во время вдоха и выдоха (модель Дондерса).
Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает, а так как плевральная полость изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного и воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается, давление в плевральной щели возрастает, легкие сжимаются и воздух выходит из альвеол.
Движения или экскурсии легких объясняются колебаниями отрицательного межплеврального давления. После спокойного выдоха оно ниже атмосферного на 4-6 мм.рт.ст. На высоте спокойного вдоха на 8-9 мм.рт.ст. После форсированного выдоха оно ниже на 1-3 мм.рт.ст., а форсированного вдоха - на 10-15 мм. рт. ст. Наличие отрицательного межплеврального давления объясняется
эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол, которые изнутри покрыты пленкой сурфактанта. Это липопротеид, вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекулы, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает.Дети-решающим моментом при первом вдохе является сильное сокращение диафрагмы.Под этим вдиянием в грудной полости создается отрицательное давление,воздух засасывается в легкие.Так же вызывается от части простыми рефлексами,раздражением кожи при понижении температуры,или же ацидозом и алкалозом,а так же играет роль умеренная гипоксия и асфиксия возможная вовремя схваток.
-
Методы исследования функции слюнных желез у человека (сиалометрия, рентгенконтрастная и радиоизотопная сиалография, ультразвуковая эхолокация, термовизиография, томография).
Сиалометрия применяется для оценки функциональной способности больших или малых слюнных желез.
Существуют различные методики раздельного получения слюны из протоков околоушных и поднижнечелюстных слюнных желез. Для сбора слюны применяют капсулы Лешли – Ющенко - Красногорского, специальные металлические канюли, ватные шарики. Можно также пользоваться полиэтиленовыми катетерами, которые позволяют осуществить полную обтурацию протока и в силу своей гибкости исключают его перфорацию. Полиэтиленовый катетер удерживается в протоке на протяжении всего исследования и не требует дополнительной фиксации
Сиалосонография(ультразвуковое исследование слюнных желез)
Сиалосонография является методом изучения структурных изменений больших слюнных желез. Основными достоинствами метода являются высокая информативность, неинвазивность и биологическая безвредность. Сиалосонография является одним из самых чувствительных методов диагностики опухолей слюнных желез независимо от их размера и локализации.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 9
-
Возбуждение. Потенциал действия, его фазы, ионный механизм возникновения. График ПД.
Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула - правило "ВСЕ ИЛИ НИЧЕГО".
Начальная деполяризация мембраны под действием раздражителя:
Если сила раздражителя достаточна, чтобы деполяризовать мембрану до КУД, открываются быстрые потенциал-зависимые натриевые каналы. Клетка возбуждена – возник нервный импульс.
Восстановление мембранного потенциала покоя - реполяризация мембраны.
Следующий этап – восстановление мембранного потенциала покоя - реполяризация, обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта - это работа Na/K - насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.
ГИПЕРПОЛЯРИЗАЦИЯ - кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД.
-
Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток -
Быстрое поступление натрия в клетку - открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный. -
Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП -
Следовая деполяризация, или отрицательный следовой потенциал - мембрана еще деполяризована относительно МПП. -
Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.
Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.
-
МПП - электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению - возбудимость. -
КУД - критический уровень, величина мембранного потенциала, при достижении которой открываются быстрые, потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка. -
Точка реверса потенциала (овершут) - такая величина положительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку - кратковременный равновесный натриевый потенциал.
При действии раздражителя подпороговой силы возникает неполная деполяризация - ЛОКАЛЬНЫЙ ОТВЕТ (ЛО). Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).
-
Аденогипофиз, его структурные и функциональные связи с гипоталамусом. Физиологическая роль гормонов. Гипо- и гиперфункция аденогипофиза.
Передняя и средняя доли гипофиза объединяются под названием аденогипофиза или адреногипофиза.
В передней доле гипофиза вырабатывается ряд тропных гормонов (гормонов, оказывающих стимулирующее влияние):
- соматотропный гормон , регулирующий процессы роста и развития молодого организма;
- тиреотропный гормон , активирующий работу щитовидной железы (продуцирование тиреоидных гормонов );
- адренокортикотропный гормон , стимулирующий секрецию стероидных гормонов надпочечниками ;
- гонадотропные гормоны ( фолликулостимулирующий гормон , лютеинизирующий гормон и пролактин ), влияющие на половое созревание и стимулирующие развитие фолликулов в яичнике и овуляцию у женщин, а также сперматогенез у мужчин.
Поскольку передняя доля гипофиза вырабатывает гормоны, стимулирующие развитие и функцию других желез внутренней секреции, гипофиз считают центром эндокринного аппарата .