ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3511
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
(1) —рефлекторная регуляцияс участием рефлекторных дуг, замыкающихся в центральной нервной системе, в экстра- и интрамуральных ганглиях. Этот тип регуляции осуществляется при раздражении экстеро- и интероцепторов;
(2) —гуморальная регуляция,реализующаяся посредством пептидов, высвобождающихся эндокринными клетками самого желудочно-кишечного тракта и переносимых кровотоком к гландулоцитам, миоцитам и интрамуральным нейронам;
(3) —паракринная регуляция,осуществляемая пептидами эндокринных клеток, поступающими в интерстиций и диффундирующими к расположенным рядом эффекторным клеткам.
Важное значение в координации деятельности желудочно-кишечного тракта имеет закономерность, согласно которой раздражители стимулируют функции в месте их действия и дистальнее, а проксималънее — тормозят.
Такими раздражителями являются различные компоненты химуса, образовавшиеся в ходе пищеварительного процесса. При снижении интенсивности обработки пищи в том или ином отделе пищеварительной трубки в нем происходит более длительная задержка пищевой массы и увеличивается секреция. Тем самым компенсируется начальное недостаточное переваривание пищи. Переход недостаточно обработанных пищевых масс из вышележащего в дистально расположенный отдел желудочно-кишечного тракта приводит к усилению в нем секреторных и гидролитических процессов.
Особенностью вегетативных волокон иннервирующих пищеварительные органы является то, что в их составе содержится не только холин- и адренергические, но и пептидергические волокна, в окончаниях которых в качестве медиаторов выделяются различные пептиды. Симпатические преганглионарные нейроны выделяют на окончаниях аксонов ацетилхолин, энкефалин и нейротензин, постганглионарные — норадреналин, ацетилхолин и вазоактивный интестинальный пептид (ВИП). Парасимпатические преганглионарные нейроны — ацетилхолин и энкефалин, а постганглионарные — ацетилхолин, энкефалин и ВИП.
-
Функциональная характеристика жевательного аппарата. Роль жевательной мускулатуры, и различных зубов в процессе механической обработки пищи в полости рта.
Необходимо разобраться в четырех понятиях, которые часто смешивают: жевательная сила, жевательная эффективность, жевательное давление и жевательная мощность. Жевательной силой называется в физиологии сила, которая может быть развита всей жевательной мускулатурой, поднимающей нижнюю челюсть. Она равна, согласно данным Вебера, в среднем 390—400 кг
Степень измельчения, до которой пища доводится зубочелюстной системой, во время выполнения ею функции жевания, называется жевательной эффективностью.
Жевательным давлением С. Е. Гельман называет ту часть жевательной силы, которая может быть реализована только на одном каком-либо участке зубочелюстной системы. Жевательное давление измеряется в килограммах при помощи гнатодинамометра.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 27
-
Современные представления о строении и функции клеточных мембран. Активный и пассивный транспорт ионов через мембрану.
Клеточная мембрана состоит из двойного слоя фосфолипидов, между молекулами фосфолипидов находятся молекулы холестерола, которые делают мембрану более жесткой. На наружной поверхности мембраны располагаются белки, которые выполняют функции рецепторов, интегральные белки пронизывают клеточную мембрану, образуя ионные каналы.
Ионные каналы представляют собой часть клеточной мембраны, состоящие из интегральных белков, способных изменять свою конформацию (открываются/закрываются). Через ионные каналы осуществляется транспорт ионов пассивным путем, т.е без затраты энергии, по градиенту концентрации.
Свойства каналов:- избирательность к определенным ионам (по размеру, заряду и т.д)-способность открываться и закрываться. Открытие и закрытие каналов может происходить при изменении потенциала мембраны (потенциал-зависимые каналы), при взаимодействии рецептора с БАВ или гормоном (хемозависимые)
Виды ионных каналов: Na, K, Cl, Ca.
Транспорт ионов через мембрану необходим для поддержания формы клетки, а также для многих метаболических процессов и участвуют в процессах возбуждения клетки.
-
Группы крови, методы определения, правила переливания крови.
сыворотка крови содержит уже «готовые» антитела к антигенам А и В, эти антитела называются естественными. Специфичным к антигены А является антитело α – при контакте мембраны эритроцита содержащего антиген А и антитела α происходит склеивание эритроцитов – реакция агглютинации, то же наблюдается и при встрече антигена В с антителом β. Поэтому антитела α и β назвали агглютининами. Отсюда понятно, что кровь, содержащая одновременно антиген А и антитело α не может существовать, так же как В и β. В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов.
Агглютинины распределены в соответствии с антигенами следующим образом:
Определение группы крови по системе АВО
1. Исследование проводят двумя моноклональными сыворотками: анти-А и анти-В
2. Реакция проводится на фарфоровой пластинке при обычном температурном режиме.
3. Наблюдают при покачивании в течение 3 мин.
Результат читается следующим образом:
1) с сывороткой анти-А агглютинации нет, а с анти-В есть - исследуемая кровь В (III);
2) в капле с сывороткой анти-А наступила агглютинация, с анти-В нет - исследуемая кровь А (II);
3) агглютинация наступила с обеими сыворотками - исследуемая кровь АВ (IV);
4) агглютинация не наступила в обеих каплях - кровь 0 (I);
Правила переливания крови
-
Определить группу крови по системе АВ0 и резус у реципиента и донора вне зависимости от того, определялась ли она раньше или нет.
-
Определение группы крови проводится только врачом, переливающим кровь. На это отводится 30 минут. -
Для определения группы крови используют сыворотку двух серий (или цоликлон), содержащую моноклональные антитела эритроцитов. -
Обязательно проводится прямая проба на индивидуальную совместимость для исключения сенсибилизации к антигенам других групп. Она выполняется invitro, берется плазма реципиента и кровь донора, смешиваются, и определяется наличие или отсутствие агглютинации. -
Обязательно проводится проба на биологическую совместимость: реципиенту переливают 10-15 мл крови в течение 3-х минут, затем еще два раза вливают по 10 - 15 мл крови с интервалом в 3 минуты. Если реакция отсутствует, переливают оставшуюся кровь.
-
Акт жевания, его саморегуляция, роль проприорецепторов жевательных мышц, механорецепторов слизистой оболочки и периодонта в регуляции жевания.
жевательный аппарат, который включает в себя зубные ряды, жевательные мышцы, височно-нижнечелюстной сустав
Пищу принимают в виде кусков, смесей различного состава и консистенции или жидкостей. В зависимости от этого она или сразу проглатывается, или подвергается механической и химической обработке в полости рта.
Процесс механической обработки пищи зубами посредством движения нижней челюсти относительно верхней называется жеванием. Жевательные движения осуществляются сокращениями жевательных и мимических мышц, мышц языка.
При жевании резцы могут развивать давление на пищу 11—25 кГс/см, коренные зубы — 29—90 кГс/см. Акт жевания осуществляется рефлекторно, имеет цепной характер, автоматизированные и волевые компоненты.
В ротовой полости пища в процессе жевания измельчается, смачивается слюной, перемешивается с ней, растворяется (без чего невозможна оценка вкусовых качеств пищи и ее гидролиз). В результате формируется относительно гомогенный ослизненный пищевой комок для глотания.
Регуляция жевания осуществляется рефлекторно. Возбуждение от рецепторов слизистой оболочки рта (механо-, хемо- и терморецепторов) передается по афферентным волокнам II, III ветви тройничного, языкоглоточного, верхнего гортанного нерва и барабанной струны в центр жевания, который находится в продолговатом мозге. Возбуждение от центра к жевательным мышцам передается по эфферентным волокнам тройничного, лицевого и подъязычного нервов. Возбуждение от чувствительных ядер ствола мозга по афферентному пути через специфические ядра таламуса переключается на корковый отдел вкусовой сенсорной системы, где осуществляется анализ и синтез информации, поступающей от рецепторов слизистой оболочки ротовой полости. На уровне коры больших полушарий происходит переключение сенсорных импульсов на эфферентные нейроны, которые по нисходящим путям посылают регулирующие влияния к центру жевания продолговатого мозга.
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 28
-
Роль гормонов желудочно-кишечного тракта в регуляции секреции пищеварительных желез.
Органы пищеварения выполняют следующие функции:1. секреторная. Она заключается в выработке пищеварительных соков, необходимых для гидролиза компонентов пищи;2. моторная и двигательная. Обеспечивает механическую переработку пищи, ее перемещение по пищеварительному
каналу и выведение непереваренных продуктов;3. всасывательная. Служит для всасывания из желудочно-кишечного тракта продуктов гидролиза;4. экскреторная.
Состав и свойства желудочного сока. Значение его компонентов
В сутки образуется 1,5-2,5 литра сока. Вне пищеварения выделяется всего 10-15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи количество образующегося сока возрастает до 500-1200 мл. Вырабатываемый при этом сок представляет собой бесцветную прозрачную жидкость сильнокислой реакци, так как в нем находится 0,5% соляной кислоты. рН пищеварительного сока 0,9-2,5. Он содержит 98,5% воды и 1,5% сухого остатка. Из них 1,1% неорганические вещества, а 0,4% органические. Неорганическая часть сухого остатка содержит катионы калия, натрия, магния и анионы хлора, фосфорной и серной кислот. Органические вещества представлены мочевиной, креатинином, мочевой кислотой, ферментами и слизью.
Ферменты желудочного сока включают пептидазы, липазу, лизоцим. К пептидазам относятся пепсины. Это комплекс нескольких ферментов, расщепляющих белки. Пепсины гидролизуют пептидные связи в молекуле белков с образованием продуктов их неполного расщепления - пептонов и полнпептидоз. Пепсины синтезируются главными клетками слизистой в неактивной форме, в виде пепсиногенов. Соляная кислота сока отщепляет от них белок ингибирующий их активность. Они становятся активными ферментами. Пепсин А активен при рН=1,2-2,0. Пепсин С, гастриксин при рН=3,0-3,5. Эти 2 фермента расщепляют коротокоцепочечные белки. Пепсин В, парапепсин активен при рН=3,0-3,5. Он расщепляет белки соединительной ткани. Пепсин D, гидролизует белок молока казеин. Пепсины А, В и D в основном синтезирутся в антральном отделе. Гастриксин образуется во всех отделах желудка. Переваривание белков наиболее активно идет в примукозальном слое слизи, так как там сосредоточены ферменты и соляная кислота. Желудочная липаза расщепляет эмулыированные жиры молока. У взрослого ее значение не велико. У детей она гидролизует до 50% молочного жира. Лизоцим уничтожает микроорганизмы попавшие в желудок.
Соляная кислота образуется в обкладочных клетках за счет следующих процессов:1. Перехода гидрокарбонат анионов в кровь в обмен на катионы водорода. Процесс образования гидрокарбонат анионов в обкладочных клетках происходит при участии карбоангидразы. В результате такого обмена на высоте секреции возникает алкалоз.2. Вследствие активного транспорта протонов в эти клетки.3. С помощью активного транспорта анинов хлора в них.