ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3506
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
Если произвести перерезку выше среднего мозга, то никакой децеребрационной ригидности нет. Децеребрационная ригидность имеет рефлекторную природу. Возникает вопрос: “Откуда поступают импульсы, вызывающие возбуждение мотонейронов спинного мозга?”. А поступают они к мотонейронам от двух рефлексогенных зон. Первая - это рецепторы вестибулярного аппарата. Находятся они во внутреннем ухе и представлены полукружными каналами, маточкой, мешочком. В этих образованиях имеются особые волосковые клетки, образующие рецепторы. Эти рецепторы постоянно раздражаются (специальным кристалликом извести), в каком бы положении не находился человек или животное. Вторая рецепторная зона, откуда поступает информация к мотонейронам спинного мозга - это проприорецепторы мышц шеи и туловища. Эти рецепторы постоянно возбуждаются вследствие того, что гамма-система обладает автоматией, а также стимулируется ретикулярной формацией ствола мозга.
45. Децеребрационная ригидность и механизм его возникновения. Роль среднего и продолговатого мозга в регуляции мышечного тонуса. Статические и с татокинетические рефлексы.
Если у кошки разрушить периферический вестибулярный аппарат, то децеребрационная ригидность резко уменьшается, но не исчезает полностью. Значит, существует другое рецепторное поле. Если затем у этой же кошки перерезать задние корешки, по которым идет информация от проприорецепторов мышц, то в этом случае децеребрационная ригидность исчезает.
Однако, классические исследования ученого Магнуса показали, что структуры продолговатого мозга не только формируют децеребрационную ригидность, но также могут перераспределять, регулировать этот тонус, что доказывается различным положением кошки в пространстве. Если взять такую децеребрационную кошку и поместить ее на ладони спиной, то в этом случае тонус в сгибателях будет больше, чем в разгибателях.
Если кошка лежит на ладони животом, то тонус будет увеличен в разгибателях по сравнению со сгибателями. Если голову кошки повернуть вправо, то тонус у нее перераспределится своеобразно: с правой стороны тонус увеличится в разгибателях передних лап, с левой стороны - в сгибателях.
Перераспределение тонуса при изменении положения в пространстве также имеет рефлекторную природу. В этом участвуют рецепторы вестибулярного аппарата и проприорецепторов мышц шеи. Доказывается это путем наложения децеребрационной кошке гипсового воротничка на шею, чтобы у кошки не изменялось положение головы относительно туловища и у нее не раздражались бы проприорецепторы мышц шеи, но при этом сохранился вестибулярный аппарат. Если при этом положение кошки в пространстве меняется, то меняется и тонус. Разрушение вестибулярного аппарата у кошки ведет к отсутствию перераспределения тонуса. Снятие гипсового воротничка, когда голова может менять положение относительно туловища, приводит к появлению перераспределения тонуса. Перерезка задних корешков в области шеи вновь исключает перераспределение мышечного тонуса.
Однако, если животному оставить варолиев мост и продолговатый мозг, такое животное способно выполнить второй более сложный статический рефлекс - рефлекс выпрямления. Представьте, что децеребрационную кошку как бы положили, она лежит, сохраняя свою позу. Если животному не противодействовать, то в этом случае у животного реализуется выпрямительный рефлекс, т. е. животное, положенное на бок, будет подниматься и вставать на лапы. Описываемый выпрямительный рефлекс запускается с нескольких рецепторных полей и имеет рефлекторную природу. Этот рефлекс может осуществляться со зрительного анализатора (в целостном организме), с чувствительных рецепторов кожи, с проприорицепторов мышц и с рецепторов вестибулярного аппарата.
Выпрямительный рефлекс состоит из двух фаз. Первая заключается в том, что животное, как и человек, поднимает голову, которая запускается с рецепторов вестибулярного аппарата. Затем наступает вторая фаза, когда животное встает на лапы, а человек на ноги. Эта фаза выпрямительного рефлекса осуществляется с проприорецепторов мышц шеи, которые раздражаются вследствие изменения положения головы.
Если тело перемещается в пространстве, то возникает второй тип тонических рефлексов, получивших название “
статокинетические рефлексы”. Они подразделяются на следующие группы рефлексов: 1) линейные (т. е. реализуются при перемещение тела по горизонтали); 2) лифтные (т. е. реализуются при перемещение тела по вертикали); 3) вращательные - (т. е. реализуются при вращение тела вокруг оси).
Линейные тонические рефлексы имеют место, когда человек перемещает туловище по горизонтали, когда он, например, бежит. Если посмотреть со стороны на бегущего спортсмена, особенно бегунов на короткие дистанции, то несложно заметить, что во время бега его тело принимает особую позу: верхняя часть туловища (голова, плечи) и ноги, устремлемлены вперед, а туловище (корпус) отстает. Создается поза, которая удобна для бега. Это типичный установочный рефлекс, называемый статокинетическим линейным рефлексом.
Второй вид статокинетических рефлексов - это лифтный рефлекс, возникающий при перемещении тела по вертикали. Понаблюдайте за собой или окружающими при подъеме в лифте: тонус в разгибателях нижних конечностей резко возрастает для того, чтобы удержать свое тело в пространстве. Если лифт опускается вниз, то имеет место обратное явление, т. е. тонус повышается в сгибателях нижних конечностей.
Третий вид статокинетических рефлексов – вращательный. Имеет место при вращении тела (встречается в практике невропатологов, при тренировке космонавтов для полетов в космос). Если человека медленно вращать в кресле, то из-за центробежных сил глазные яблоки, его тело и голова под действием центробежной силы начинают отклоняться в сторону, противоположную центру вращения.
Затем происходит обратное возвращение корпуса, головы и глазных яблок в исходное состояние. Вышеописанные ритмические мышечные колебания есть ничто иное как проявление тонической деятельности ствола мозга и мотонейронов сегментарного аппарата.
46. Мозжечок, его связи и участие в регуляции двигательных и вегетативных функций организма. Клинические симптомы повреждения мозжечка.
Важнейшими функциями центрального двигательного аппарата являются обеспечение точности целенаправленных движений, регуляция согласованного, координированного действия мышц-антагонистов, «подправляющих», корригирующих траекторию движения. Подходя к двери, мы поднимаем руку, чтобы нажать кнопку звонка. Вначале наше движение носит ориентировочный характер; мы так же поднимали бы руку, чтобы поправить прическу, надеть очки. Однако на каком-то своем этапе это движение становится только движением к кнопке и, чтобы палец попал именно в кнопку, нужна определенная согласованность действий мышц-антагонистов, причем тем большая, чем ближе цель движения.
Внешне движение к цели идет по прямой, без резких изгибов траектории, но эта внешняя «гладкость» движения требует постоянного перераспределения «внимания» центральных регуляторных аппаратов с одной группы мышц на другую. Точно так же, обеспечивая внешне прямое движение автомобиля, водитель не перестает вращать руль, корригируя имеющиеся или угрожающие изменения траектории.
Координирующий аппарат контролирует равновесие тела, стабилизирует центр тяжести, регулирует согласованную деятельность мышц- антагонистов, обеспечивающих сгибание, разгибание и пр. Обеспечение координации движений требует четкой и непрерывной обратной афферентации, информирующей о взаимоположении мышц, суставов, о нагрузке на них, о ходе выполнения траектории движения.
Центром координации движений является мозжечок. Естественно, однако, что координация движений обеспечивается также деятельностью корковых центров, всей экстрапирамидной системы, афферентных и эфферентных путей.
Специалисты полагают, что кора больших полушарий — главное звено рефлекторного двигательного акта. А уточнением его величины, силы и других деталей занимается мозжечок на основании собственной информации, полученной им с периферии, с учетом «указаний» коры больших полушарий. В силу этого роль мозжечка в движении многие ученые считают дополнительной, соподчиненной.
Поскольку мозжечок так тесно связан с функцией мышечной системы, небезынтересно знать, имеет ли он отношение к регуляции деятельности гладкой мускулатуры, то есть мышц внутренних органов. Эксперименты на животных показали, что мозжечок принимает участие в регуляции движений петель кишечника. Более того, была обнаружена тесная его связь с вегетативной нервной системой, что открывает возможности для поиска путей воздействия этого образования мозга на функции внутренних органов. Однако предположение о том, что мозжечок — главный орган регуляции функций вегетативной нервной системы, не подтвердилось.
Не увенчалась успехом и попытка отвести мозжечку роль «органа любви и размножения», бездоказательным осталось мнение, что мозжечок является одним из регуляторов трофики (питания) тканей организма. А вот тонизирующее, стимулирующее влияние мозжечка на деятельность коры больших полушарий, аналогичное тому, которое оказывают на нее другие подкорковые образования мозга, доказано.
Таким образом, на данном этапе развития науки о мозге можно с уверенностью сказать, что мозжечок имеет отношение к осуществлению многих важных функций организма, и прежде всего к поддержанию тонуса мышц, координации движений, стоянию и ходьбе, а также, вероятно, и к некоторым вегетативным функциям, включая регуляцию уровня артериального давления. Однако мозжечок не "маленькая дополнительная система", как думали раньше, а образование со многими важными и сложными обязанностями, работающее в тесном единстве с другими отделами центральной нервной системы и образующее вместе с ними единую целостную: систему — мозг человека.
Согласно общепринятому мнению, основное значение мозжечка состоит в том, что он корректирует и дополняет деятельность других двигательных центров. Основные функции мозжечка – регуляция позы и мышечного тонуса, координация медленных движений и рефлексов поддержания позы и коррекция быстрых целенаправленных движений, формируемых двигательной корой больших полушарий. При этом считается, что каждая область мозжечка (архиоцеребеллум, палеоцеребеллум и неоцеребеллум) выполняет определенные функции в процессах координации мышечной деятельности.
Архиоцеребеллум (или внутренняя часть) регулирует активность вестибулярных ядер продолговатого мозга и нейронов ретикулярной формации моста. Тем самым он влияет на процессы равновесия и формирования позы. Это влияние достигается тем, что кора архиоцеребеллума за счет клеток Пуркинье регулирует состояние нейронов ядра шатра (тормозит их активность при возбуждении клеток Пуркинье или, наоборот, повышает их активность при торможении клеток Пуркинье). В свою очеред, возбуждение нейронов ядра шатра активирует нейроны вестибулярных ядер и нейроны ретикулярной формации моста, результатом чего является рост активности альфа-мотонейронов мышц-разгибателей. Деятельность архиоцеребеллума основана на информации, поступающей от рецепторов вестибулярного аппарата по вестибуло-мозжечковым волокнам, входящим в состав ядерно-мозжечкового пути.
Функция палеоцеребеллума (или средней части мозжечка) – это взаимная координация позы и целенаправленного движения, а также коррекция выполнения сравнительно медленных движений на основе механизма обратной связи. Эта функция реализуется с участием двух промежуточных ядер мозжечка – пробковидного и шаровидного, которые влияют на активность красного ядра и ретикулярной формации продолговатого мозга.