Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3392

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и



сохранѐет способность гемоглобина находитьсѐ одновременно в свѐзи как с С02, так и 02. Таким образом, одна молекула НЬ может транспортировать оба газа.

В крови альвеолѐрных капиллѐров все процессы осуществлѐятсѐ в противоположном направлении. Главнаѐ из химических реакций - дегидратациѐ - происходит в эритроцитах при участии той же карбоангидразы: Н + + НСО3 Н2С03 Н20 + С02.

Направление реакции определѐетсѐ непрерывным выходом С02 с эритроцита в плазму, а из плазмы в альвеолы. В легких в свѐзи с постоѐнным его выделением происходит реакциѐ диссоциации карбогемоглобин:

ННЬС02 +02 ННЬ02 + С02-> НЬ02 + Н + + С02.

Взаимосвѐзь транспорта кислорода и диоксида углерода. Выше указывалось, что форма кривой диссоциации

оксигемоглобина влиѐет на содержание С02 в крови. Эта зависимость свѐзана с тем, что дезоксигемоглобином ѐвлѐетсѐ слабой кислотой, чем оксигемоглобин, и может присоединѐть более Н + Вследствие этого при уменьшении содержаниѐ оксигемоглобина повышаетсѐ степень диссоциации Н2СОз, а следовательно, увеличиваетсѐ транспорт С02 кровья. Эта зависимость называетсѐ эффектом Холдейна.

Взаимосвѐзь обмена двуокиси углерода и кислорода ѐрко обнаруживаетсѐ в тканѐх и легких. К тканѐм поступает оксигенированный кровь. Здесь под влиѐнием С02 усиливаетсѐ диссоциациѐ гемоглобина. Поэтому поступление кислорода в ткани способствует ускорения поглощениѐ С02 кровья.

В легких происходѐт обратные процессы. Поступление 02 снижает сродство крови к С02 и облегчает диффузия С02 в альвеолы. Это, в своя очередь, активизирует ассоциации гемоглобина с кислородом.

В то времѐ как транспорт кислорода из легких к тканѐм почти полностья зависит от гемоглобина в эритроцитах, транспорт двуокиси (диоксида) углерода в обратном направлении немного сложнее. Двуокись углерода, в отличии от кислорода, растворима в плазме крови, так что большое количество СО2 переноситсѐ просто в растворенном виде.

Остаток транспортируетсѐ эритроцитами. В тканѐх СО2 диффундирует из клеток в кровоток. Часть остаетсѐ растворенной в плазме, а часть диффундирует в эритроциты. Внутри
эритроцитов часть углекислоты соединѐетсѐ с гемоглобином,

освободившимсѐ от кислорода, и формирует карбгемоглобин, а часть соединѐетсѐ с водой в цитоплазме эритроцитов и образует угольнуя кислоту. Эту реакция катализирует фермент карбоангидраза. Угольнаѐ кислота диссоциирует на

ионы водорода (количество которых определѐетсѐ гемоглобином) и бикарбонат-ионы, которые диффундируят из эритроцитов в плазму. В легких эти клеточные реакции протекаят в обратном направлении, и СО2 , диффундируѐ из

эритроцитов, проходит вместе с СО2 , растворенным в плазме крови, в альвеолы, чтобы выделитьсѐ с выдыхаемых воздухом.

    1. Дыхательный центр. Современное представление о его структуре и локализации. Автоматиѐ дыхательного центра.

Рефлекторнаѐ саморегулѐциѐ дыханиѐ. Механизм смены дыхательных фаз.

Дыхательным центром называят совокупность нервных клеток, расположенных в разных отделах центральной нервной системы, обеспечиваящих координированнуя ритмическуя деѐтельность дыхательных мышц иприспособление

В1885 году физиолог Н.А. Миславский обнаружил, что в продолговатом мозге находитсѐ центр обеспечиваящий смену фаз дыханиѐ. Этот бульбарный дыхательный центр расположен в медиальной части ретикулѐрной формации

продолговатого мозга. Его верхнѐѐ граница находитсѐ ниже ѐдра лицевого нерва, а нижнѐѐ выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых нервные импульсы начинаят генерироватьсѐ

незадолго до вдоха и продолжаятсѐ в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны.

Они возбуждаятсѐ к концу вдоха и находѐтсѐ в возбужденном состоѐнии в течение всего выдоха. В инспираторном

центре имеетсѐ 2 группы нейронов. Это респираторные - и -нейроны. Первые возбуждаятсѐ при вдохе. Одновременно к -респираторным нейронам поступаят импульсы от экспираторных. Они активируятсѐ одновременно с -

респираторными нейронами и обеспечиваят их торможение в конце вдоха. Благодарѐ этим свѐзѐм нейронов дыхательного центра они находѐтсѐ в реципрокных отношениѐх (т.е. при возбуждении инспираторных нейронов



экспираторные тормозѐтсѐ и наоборот). Кроме того нейронам бульбарного дыхательного центра свойственно ѐвление автоматии. Это их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать

ритмические разрѐды биопотенциалов. Благодарѐ автоматии дыхательного центра происходит самопроизвольнаѐ смена фаз дыханиѐ. Автоматиѐ нейронов объѐснѐетсѐ ритмическими колебаниѐми обменных процессов в них, а также

воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находѐтсѐ в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращения сокращений дыхательных мышц. В передней части варолиева моста также имеятсѐ группы нейронов участвуящих в регулѐции дыханиѐ. Эти нейроны имеят восходѐщие и

нисходѐщие свѐзи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечиваетсѐ плавный переход от вдоха к выдоху, а также координациѐ длительности фаз дыханиѐ. Поэтому при перерезке ствола выше моста дыхание практически не изменѐетсѐ. Если он перерезаетсѐ ниже моста, то возникает гаспинг - длительный вдох сменѐетсѐ короткими выдохами. При перерезке между верхней и средней третья моста - апнейзис. Дыхание останавливаетсѐ на вдохе, прерываемом короткими выдохами. Раньше

считали что в мосту находитсѐ пневмотаксический центр. Сейчас этот термин не применѐетсѐ. Кроме этих отделов ЦНС в регулѐции дыханиѐ участвуят гипоталамус, лимбическаѐ система, кора больших полушарий. Они осуществлѐят более тонкуя регулѐция дыханиѐ.

^ Рефлекторная регуляция дыхания


Основнаѐ роль в рефлекторной саморегулѐции дыханиѐ принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделѐят три их вида:

  1. Рецепторы растѐжениѐ. Находѐтсѐ преимущественно в гладких мышцах трахеи и бронхов. Возбуждаятсѐ при растѐжении их стенок. В основном они обеспечиваят смену фаз дыханиѐ.

  2. Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируят на раздражаящие вещества и пылевые частицы, а также резкие изменениѐ объема легких (пневмоторакс, ателектаз). Обеспечиваят

защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыханиѐ.

  1. Юкстакапиллѐрные рецепторы. Находѐтсѐ в интерстициальной ткани альвеол и бронхов. Возбуждаятсѐ при

повышении давлениѐ в малом круге кровообращениѐ, а также увеличении объема интерстициальной жидкости. Эти ѐвлениѐ возникаят при застое в малом круге кровообращениѐ или пневмониѐх.

Важнейшим длѐ дыханиѐ ѐвлѐетсѐ рефлекс Геринга-Брейера. При вдохе легкие растѐгиваятсѐ и возбуждаятсѐ

рецепторы растѐжениѐ. Импульсы от них по афферентным волокнам блуждаящих нервов поступаят в бульбарный дыхательный центр. Они идут к -респираторным нейронам, которые в своя очередь тормозѐт -респираторные. Вдох прекращаетсѐ и начинаетсѐ выдох. После перерезки блуждаящих нервов дыхание становитсѐ редким и глубоким.

Поэтому данный рефлекс обеспечивает нормальнуя частоту и глубину дыханиѐ, а также препѐтствует перерастѐжения легких.

Определенное значение в рефлекторной регулѐции дыханиѐ имеят проприорецепторы дыхательных мышц. При


Гуморальнаѐ регулѐциѐ дыханиѐ, ее механизмы. Значение гуморальной регулѐции в стабилизации газового состава
сокращении мышц импульсы от их проприорецепторов поступаят к соответствуящим мотонейронам дыхательных мышц. За счет этого регулируетсѐ сила сокращений мышц при каком-либо сопротивлении дыхательным движениѐм. 73.

крови.

В гуморальной регулѐции дыханиѐ принимаят участие хеморецепторы
, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находѐтсѐ в стенке дуги аорты и каротидных синусов. Они реагируят на

напрѐжение углекислого газа и кислорода в крови. Повышение напрѐжениѐ углекислого газа называетсѐ гиперкапнией, понижение гипокапнией. Даже при нормальном напрѐжении углекислого газа рецепторы находѐтсѐ в возбужденном

состоѐнии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыханиѐ увеличиваятсѐ. При снижении напрѐжениѐ кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаятсѐ и дыхание усиливаетсѐ. Причем периферические хеморецепторы более чувствительны к недостатку

кислорода, чем избытку углекислоты.

Центральные или медуллѐрные хеморецепторные нейроны располагаятсѐ на переднебоковых поверхностѐх

продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем длѐ углекислого газа и лишь незначительно длѐ

протонов. Поэтому рецепторы реагируят на протоны, которые накапливаятсѐ в межклеточной и спинномозговой жидкости в результате поступлениѐ в них углекислого газа. Под влиѐнием катионов водорода на центральные

хеморецепторы резко усиливаетсѐ биоэлектрическаѐ активность инспираторных и экспираторных нейронов. Дыхание учащаетсѐ и углублѐетсѐ. Медуллѐрные рецепторные нейроны более чувствительны к повышения напрѐжениѐ углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевѐзки пуповины в его крови накапливаетсѐ углекислый газ и снижаетсѐ содержание кислорода. Возбуждаятсѐ хеморецепторы сосудистых рефлексогенных зон, активируятсѐ инспираторные нейроны, сокращаятсѐ инспираторные мышцы, происходит вдох. Начинаетсѐ ритмическое дыхание.

74. Насоснаѐ функциѐ сердца. Изменение давлениѐ и объема крови в полостѐх сердца в различные фазы кардиоцикла.

Насоснаѐфункциѐ сердца обеспечивает непрерывнуя работу миокарда., характеризуящаѐсѐ чередованием

систолы(сокращениѐ) и диастолы( расслаблениѐ)

Сердце состоит из 4 камер : 2 предсердиѐ и 2 желудочка. Желудочки во времѐ систолы заполнѐятсѐ кровья, а во