Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3341

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и


Оценка физиологических свойств сердечной мышцы по ЭКГ (оцениваются 3 из 4-х свойств):

автоматия, проводимость и возбудимость.

Оценка автоматии сердечной мышцы проводится по:

  1. Частоте сердечных сокращений.

  2. Ритмичности сердечных сокращений.

  3. Локализации очага возбуждения.

а) Частота сердечных сокращений (ЧСС)В норме, при ЧСС, равной 60-80 уд/мин, делают вывод о нормокардии (т.е. нормальном числе сердечных сокращений), снижение ЧСС менее 60 уд/мин называется брадикардия, увеличение ЧСС более 80 уд/мин - тахикардия.

б) Ритмичность:если продолжительность каждого из взятых циклов отличается от среднего значения не более, чем на 10%, ритм считается правильным. При большем отклонении делают вывод о неправильном ритмеили аритмии.

в). Локализация водителя ритма определяется

на основании ЧСС, а также
по последовательности и направлению зубцов на ЭКГ:

Синусовый ритм: локализация водителя ритма в синоатриальном узле характеризуется ЧСС, равной 60-80 уд/мин, а также правильным расположением и направлением зубцов ЭКГ.

Атриовентрикулярный ритм: при локализации водителя ритма в атриовентрикулярном узле ЧСС будет равна 40-59 уд/мин, зубец Р - отрицательный и может располагаться перед комплексом QRS, после него, или накладываться на него и не определяться (в зависимости от локализации водителя ритма в верхней, средней или нижней трети узла).

Желудочковый ритм: при локализации водителя ритма в центре автоматии 3-го порядка (пучок Гиса, ножки пучка Гиса), ЧСС - менее 40 уд/мин, при этом, вследствие необычного распространения возбуждения, комплекс QRS становится расширенным, неправильной формы. Предсердия при этом нарушении сокращаются в синусовом ритме, на ЭКГ выявляются нормальные зубцы Р, при этом они не связаны с QRS (т.н.предсердныеР-

волны). Как правило, регистрируется при полной атриовентрикулярной блокаде.

Оценка проводимости сердечной мышцы проводится по

  1. Положению электрической оси сердца.

  2. Продолжительности элементов ЭКГ.

А) Заключение о положении электрической оси сердца.

Электрическая ось сердца, как правило, в момент формирования зубца R соответствует анатомической оси сердца, которая в грудной клетке направлена сверху вниз, сзади наперед и слева направо. Если ЭОС поместить в треугольник Эйнтховена, составленного из 3-х стандартных отведений и опустить на все три стороны треугольника перпендикуляры от начала и окончания ЭОС, то проекция ЭОС на сторонах треугольника будет отражать величину зубца R в различных отведениях. Если наоборот, отложить на сторонах треугольника величины зубца R и опустить перпендикуляры до пересечения, то получится вектор ЭОС.

  1. в норме электрическая ось сердца при формировании зубца R совпадает с анатомической. На ЭКГ:

R2>R3>R1 , это - нормограмма (т.е. нормальное положение электрической оси сердца у нормостеников).

  1. при отклонении электрической оси влево на ЭКГ определяется левограмма, для которой характерно соотношение: R1>R2>R3.

Левограмма свидетельствуетили о горизонтальном анатомическом положении оси сердца (гипертрофия, конституциональные особенности - гиперстеник) или о нарушении /замедлении/ проведения возбуждения по левому желудочку.

  1. при отклонении электрической оси вправо на ЭКГ определяется правограмма, для которой характерно соотношение: R3>R2>R1.

Правограмма свидетельствуетили о вертикальном анатомическом положении оси сердца (у астеников) или о нарушении /замедлении/ проведения возбуждения по правому желудочку (гипертрофия, инфаркт правых отделов сердца).
Б) Заключение о проводимости миокарда

Оценивается по длительности интервалов, сегментов и зубцов. Удлинение этих элементов характеризует

замедление проведения возбуждения.

  1. длительность зубца Р в норме составляет не более 0,1 сек: восходящая часть - не более 0,05 сек, нисходящая часть - не более 0,05 сек.

  2. сегмент PQ измеряется от конца зубца Р до начала зубца Q. В норме он составляет не более 0,1 сек.

  3. интервал РQ измеряется от начала зубца Р до начала зубца Q. В норме он составляет 0,12-0,2 сек у взрослых, и 0,1-0,13 сек у детей.

  4. комплекс QRS измеряется от начала зубца Q до конца зубца S. В норме он составляет 0,06-0,1 сек.

Заключение о проводимости сердечной мышцы по продолжительности элементов ЭКГ.

Делают на основании анализа продолжительности зубцов и интервалов ЭКГ:

  • нарушение проводимости предсердий характеризуется удлинением зубца Р: правого предсердия - восходящей части Р, а левого предсердия - нисходящей.

  • атриовентрикулярная блокада или блокада пучка Гиса характеризуется удлинением сегмента РQ.

  • блокада проведения возбуждения в желудочках (склероз, ишемия, инфаркт миокарда) характеризуется расширением комплекса QRS.

  • неравномерный охват возбуждением миокарда желудочков (например, при инфаркте миокарда) характеризуется смещением интервала ST выше изолинии.

Оценка возбудимости сердечной мышцы.

Возбудимость оценивается по вольтажу зубцов в одном из стандартных отведений с максимально выраженной амплитудой. При стандартной калибровке 1 mV = 1 см величина зубцов в норме составляет:

Р - 0,5-2 мм;

Q - 1-3 мм, в норме может отсутствовать;

R - 10-20 мм; X 0,1 mV,

S - 1-3 мм, в норме может отсутствовать; Т - 2-6 мм.

Холтеровское /суточное/ мониторирование ЭКГ.


-метод непрерывной амбулаторной регистрации ЭКГ с помощью портативных записывающих устройств и ускоренной интерпретации полученных данных.

Запись производится кардиорегистратором /2-х канальным/ с электронной памятью и блоком питания. Анализирующее устройство -компьютер, способный воспроизвести и показать любой участок суточной записи. Анализ показателей ведется за счет специального программного обеспечения.

Улучшает качество диагностики и прогноза.

57. Функциональная классификация кровеносных сосудов…


Функциональная классификация сердечно-сосудистой системы

  1. Сердце-насос, ритмически выбрасывающий кровь в сосуды, генератор давления и регулятор «расхода» крови
  2. Кровеносные сосуды

Функциональная классификация сосудов

    1. Упруго-растяжимые (аорта и легочная артерия), сосуды «котла» или «компрессионной камеры». Сосуды эластического типа, принимающие порцию крови за счет растяжения стенок, обеспечивают непрерывный, пульсирующий ток крови, формируют в динамике систолическое и пульсовое давление в большом и малом кругах кровообращения, определяют характер пульсовой волны.

    2. Транзиторные (крупные, средние артерии и крупные вены). Сосуды мышечно - эластического типа, почти не подвержены нерным и гуморальным влияниям, не влияют на характер кровотока.

    3. Резистивные (мелкие артерии, артериолы и венулы). Сосуды мышечного типа, вносят основной вклад в формирования сопротивлению тока крови, существенно изменяют свой просвет под действием нервных и гуморальных влияний.


Важнейшую роль играют артериолы. Они окончательно гасять пульсирующие характеристики кровотока, в них перестает регистрироваться пульсовое давления, стабилизируются характеристики объемной и линейной скорости кровотока. Именение просвета артериол существенно изменяет сопротивление кровотоку и выраженно изменяет давление в артериальной системе. Они «краны ССС», регулируют объем крови, оттекающей из артериальной системы и притекающей к обменным сосудам

    1. Обменные (капилляры). В этих сосудах происходит обмен между кровью и тканями.

    2. Емкостные (мелкие и средние вены).Сосуды в которых находится основной объем крови. Хорошо реагируют на нервные и гуморальные воздействия. Обеспечивают адекватный возврат крови к сердцу. Изменение давления в венах на несколько мм.рт.ст. увеличивает количество крови в емкостных сосудах в 2-3 раза.

    3. Шунтирующие (артерио-венозные анастомозы). Обеспечивают переход крови из артериальной системы в венозную, минуя обменные сосуды.

    4. Сосуды-сфинктеры (прекапиллярные и посткапиллярные). Определяют зональное включение и выключение обменных сосудов в кровоток.

В системе кровообращения можно выделить три области


  1. Область высокого давления/артериальная- большой и малый круги кровообращения/, содержит 15-20% общего объема крови и характеризуется высоким давлением.
  2. Область транскапиллярного обмена

  3. Область большого объема/венозная -большой и малый круги кровообращения/, содержит 75-80% общего объема крови и сравнительно низким давлением

Общая характеристика движения крови по сосудам

Движущей силой кровотока является энергия, задаваемая сердцем потоку крови и градиент давления в начале и конце каждого из кругов кровообращения.

Большой круг кровообращения. Из аорты /сАД-100мм.рт.ст./ кровь течет в систему артерий/80 мм.рт.ст./, артериол/40-60 мм.рт.ст./, в систему капилляров /15-25 мм.рт.ст./. Паралелльно по мере увеличение площади и объема сосудистого русла нарастает сопротивление кровотоку. В аорте оно составляет 6,4*101 дин.с.см-5, в крупных артериях-3*103, в средних и мелких артериях 1,2-1,6*105, в артериолах – 2*1010. Особенно большойскачок увеличения сопротивления кровотоку приходиться на артериолы.


Паралелльно увеличивается объем сосудистого русла и уменьшается линейная скорость кровотока. В аорте объем в 500-600 раз меньше чем в капиллярах, линейная скорость – в аорте 50 см/с, а в капиллярах 0,5-1 мм/с. Малый круг кровообращения :венулы/12-15 мм.рт.ст./, средние вены/3-5 мм.рт.ст./,полые вены/1-3 мм.рт.ст./, правое предсердие в диастолу/центральное венозное давление/-0. Аналогичная зависимость/как и в артериальной системе/ между объемом сосудистого русла и линейной скоростью кровотока в венозной системе. Только там обратная закономерность. С начало венозное русло широкое и постепенно суживается. Меняется и линейная скорость от 1 см/с в венулах до 33 см/с в полых венах.

В норме для кровообращения характерен ламинарный ток крови,т.е. в крови образуются слои, в которых частицы двигаются паралелльно оси сосуда с относительно постоянной скоростью, при чем частицынаходящиеся в центре сосуда движутся с максимальной скоростью, которая постепенно убывает от слоя

к слою к стенке сосуда. Профиль скоростей частиц имеет форму параболы.Средняя скорость частиц равна половине максимальной.

При достижении критической скорости движения крови/число Рейнольдса, которое отражает зависимость между средней скоростью, диаметром сосуда, плотность и вязкостью, при этом превышает 2000/, ламинарностьнарушается, образуются завихрения, слои смешиваются кровоток приобретает характер турбулентного.

Турбулентность потока, как правило, возникает при сужении просвета сосуда, при этом значительно возрастает гидродинамическая нагрузка на эпителий сосудов, другие элементы сосудистой стенки, что приводит к дальнейшим ее патологическим изменениям.

Движение крови по сосудам характеризуется тремя показателями:

  1. Кровяное давление- это давление крови на стенку сосуда и впереди лежащую порцию крови. Определяется соответствием объема кровеносного сосуда и крови в нем находящейся. Различают давление в аорте, артериальное давление, давление в мелких артериях и артериолах, капиллярное давление, венозное давление/в крупных и мелких венах/, центральное венозное давление/в правом предсердии, кроме того отдельно выделяют- давление в артериях и венах малого круга кровообращения.

  2. Объемная скоростью кровотока(ОСК)- количество крови, которое проходит через поперечное сечение сосуда за единицу времени. Системная ОСК на любом участке сосудистого русла постоянна, т.е. за единицу времени через общее сечение капиллярного ложе проходит такое же количество крови как и через аорту. ОСК в отдельном сосуде при прочих равных условиях зависит от площади поперечного сечения сосуда. Чем она больше, тем больше ОСК в сосуде.

  3. Линейная скорость кровотока (ЛСК) – это скорость перемещения частиц крови вдоль стенки сосуда за единицу времени и рассчитывается по формуле: