ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 3478
Скачиваний: 2
СОДЕРЖАНИЕ
Наиболее широко в ЦНС распространены медиаторы - амины:
Другие производные аминокислот - ГАМК, глицин, глютамин и др.
Название рецептора определено медиатором, с которым он взаимодействует:
Взаимодействие гормонов и парагормонов с клетками-мишенями
Понятие высших психических функций (Выготский)
Физиология газообмена в легких
Гуморальная, рефлекторная, нервная регуляция деятельности сердца
1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося
Механизм формирования ПС связан с:
4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.
8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения
Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.
Закономерности проведения возбуждения через нервно-мышечный синапс:
В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:
Тетанические сокращения отличается от одиночного следующими параметрами:
12. Функциональная характеристика гладких мышц.
13. Сила и работа мышц. Утомление и его особенности в целостном организме.
14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.
17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных
Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.
Постсинаптическое гиперполяризацийне торможения.
Пресинаптическое деполяризации торможения.
Особенности передачи возбуждения в ЦНС:
Рефлекторная дуга имеет следующие звенья:
24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги
По расположению рецепторы подразделяют на:
По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:
Физиологические механизмы кодирования информации в рецепторах.
26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.
27. Общие принципы координационной деятельности ЦНС.
28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение
В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-
34. Сегментарные и надсегментарные центры вегетативной нервной системы
35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.
Факторы гуморальной регуляции:
Механизм действия на клетки жирорастворимых гормонов:
Механизм действия жирорастворимых гормонов определяет следующие их особенности:
При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:
Классификация условных и безусловных рефлексов
- постоянство внутренней среды организма;
Современные представления о путях замыкания временных связей:
Эмоции выполнѐят две функции : сигнальную и регуляторную.
Эмоции делят на низшие и высшие.
Структурное обеспечение эмоций. Эмоциогенные структуры мозга.
Две сигнальные системы действительности
Типы высшей нервной деятельности
Общая характеристика восприятия
Безазотистые органические компоненты крови
Основные физико-химические константы крови:
Противосвертывающая система крови.
В норме гемоглобин содержится в виде нескольких соединений:
Методы исследования вентиляции легких:
Кислородная емкость крови, анализ кривой диссоциации:
Анализ кривой диссоциации НbО2:
^ Рефлекторная регуляция дыхания
второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.
^ Внутрисердечные механизмы регуляции.
Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и
Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в
Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав
Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,
97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции
Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция
101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,
106. Физиология щитовидной и околощитовидной желез
107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма
Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов
Лимфа, оттекающая от разных органов и тканей, имеет различный состав в зависимости от особенностей их обме- на веществ и деятельности. Так, лимфа, оттекающая от печени, содержит больше белков, чем лимфа конечностей. Из лимфатических сосудов желез внутренней секреции оттекает лимфа, содержащая гормоны.
В лимфе обычно нет эритроцитов, а есть очень небольшое количество зернистых лейкоцитов, которые выходят из кровеносных капилляров через их эндотелиальную стенку, а затем из тканевых щелей поступают в лимфатические капилляры. При повреждении кровеносных капилляров, в частности при действии ионизирующей радиации, проницаемость их стенок увеличивается и тогда в лимфе могут появляться эритроциты и зернистые
лейкоциты в значительном количестве. В лимфе грудного протока имеется большое число лимфоцитов. Последнее обусловлено тем, что лимфоциты образуются в лимфатических узлах и из них с током лимфы переносятся в кровь.
Образование лимфы
Лимфообразование связано с переходом воды и ряда растворенных в плазме крови веществ из кровеносных капилляров в ткани, а из тканей в лимфатические капилляры.
Стенка кровеносных капилляров представляет собой полупроницаемую мембрану. В ней имеются ультрамикроскопические поры, через которые происходит фильтрация. Величина пор в стенке капилляров разных органов, а, следовательно, и проницаемость капилляров неодинаковы. Так, стенка капилляров печени обладает более высокой проницаемостью, чем стенка капилляров скелетных мышц. Именно этим объясняется тот факт, что примерно больше половины лимфы, протекающей через грудной проток, образуется в печени.
Проницаемость кровеносных капилляров может изменяться в различных физиологических условиях, например под влиянием поступления в кровь так называемых капиллярных ядов (гистамин и др.)
Вода и растворенные в ней низкомолекулярные вещества: неорганические соли, глюкоза, а также кислород и другие газы, находящиеся в плазме крови
, могут легко переходить из крови в ткани через стенку артериального колена капилляра. Давление крови в артериальном колене капилляра, равное примерно 30—35 мм рт. ст., способствует переходу воды из плазмы крови в тканевую жидкость.
Растворенные в плазме высокомолекулярные вещества — белки плазмы крови — не проходят через эндотелиальные клетки капилляров и остаются в кровяном русле. Создавая онкотическое давление, белки тем самым способствуют задержке воды в кровяном русле. Величина онкотического давления белков плазмы крови в артериальном колене капилляра примерно 25 мм рт. ст.
Таким образом, гидростатическое давление в капилляре способствует выходу воды из кровяного русла в тканевую жидкость, а онкотическое давление плазмы крови задерживает выход воды. Фильтрационное давление, обеспечивающее переход воды (и растворенных в ней низкомолекулярных веществ) из кровяного русла в тканевую жидкость, должно быть равным разности между указанными двумя давлениями, т. е. примерно 6—10 мм рт. ст.
Долгое время считали, что именно это давление обеспечивает транспорт воды и растворенных в ней веществ из кровяного русла в ткани. Однако 5—10 мм рт. ст. является величиной незначительной, которая к тому же уменьшается при падении уровня общего артериального давления.
Если бы фильтрация, т. е. переход воды и растворенных в ней нужных для тканей веществ, обеспечивалась только разностью между гидростатическим и онкотическим давлением, то этот процесс мог бы нарушаться даже при небольших колебаниях уровня артериального давления (например, при изменении положения частей тела в пространстве). Однако нарушения фильтрации не происходит вследствие того, что, помимо упомянутых факторов, транспорт воды из крови в тканевую жидкость, облегчается действием двух факторов:
-
периодическим колебанием давления в тканях в результате пульсации проходящих через ткани артерий, а также вследствие периодического сокращения скелетных мышц и гладких мышц внутренних органов, вызывающих периодическое сдавливание лимфатических сосудов; -
наличия в лимфатических сосудах клапанов, вследствие чего периодическое сдавливание их вызывает активное нагнетание жидкости, заполняющей лимфатические сосуды, в центральном направлении, т. е. отсасывание ее из тканей. Последнее приводит к тому, что давление тканевой жидкости может стать ниже атмосферного примерно на 8 мм рт. ст. При этом фильтрационное давление, обеспечивающее переход жидкости из артериальной части капилляров в ткани, больше разности гидростатического и онкотического давлений на величину отрицательного давления, существующего в тканевой жидкости (на 8 мм рт. ст.), и составляет около 15—20 мм рт. ст. -
Присасывающая сила отрицательного давления в тканях действует независимо от изменения гидростатического давления в капиллярах, т. е. от уровня системного артериального давления, что увеличивает надежность процесса перехода воды из кровяного русла в ткани и образование лимфы. -
Фактором, содействующим лимфообразованию, может быть повышение осмотического давления тканевой жидкости и самой лимфы. Этот фактор приобретает большое значение, если в тканевую жидкость и лимфу переходит значительное количество продуктов диссимиляции. Большинство продуктов обмена имеет относительно низкую молекулярную массу и потому повышает осмотическое давление тканевой жидкости, что в свою очередь обусловливает поступление в ткани воды из крови и усиливает лимфообразование. -
Усиление лимфообразования происходит при введении в кровь некоторых так называемых лимфогонных веществ. Лимфогонным свойством обладают вещества, извлеченные из земляники, пептоны, гистамин и др. -
Механизм усиленного лимфообразования и лимфообращения при действии лимфогонных веществ состоит в том, что они увеличивают проницаемость стенки капилляров. -
Действие лимфогонных веществ аналогично действию факторов, вызывающих воспалительные реакции (бактерийные токсины, ожог и т. п.). Последние также увеличивают проницаемость капилляров, что ведет к образованию воспалительного экссудата. -
Эндотелиальная стенка капилляров не является пассивной перепонкой, через которую фильтруется плазма крови. В разных тканях через стенки капилляров в лимфу поступают из крови различные вещества. Стенка капилляров обладает избирательной проницаемостью. Особенно отчетливо эта избирательность проявляется в
капиллярах мозга, которые не пропускают из крови ряд веществ, свободно проходящих через капиллярную стенку других органов.
Механизмы передвижения лимфы
В нормальных условиях в организме существует равновесие между скоростью лимфообразования и скоростью оттока лимфы от тканей. Отток лимфы из лимфатических капилляров совершается по лимфатическим сосудам, которые, сливаясь, образуют два крупных лимфатических протока, впадающих в вены. Таким образом, жидкость, вышедшая из крови в капиллярах, снова возвращается в кровяное русло, принося ряд продуктов клеточного обмена.
В перемещении лимфы определенную роль играют ритмические сокращения стенок некоторых лимфатических сосудов. В минуту происходит 8—10, а по данным отдельных исследователей, 22 сокращения. Перемещение лимфы при сокращении сосудистой стенки в связи с существованием клапанов в лимфатических сосудах происходит только в одном направлении.
Морфологически обнаружены нервные волокна, подходящие к крупным лимфатическим сосудам, а физиологическими экспериментами показано влияние симпатических нервов на лимфоток. При раздражении симпатического пограничного ствола наблюдали настолько сильное сокращение и спазм лимфатических сосудов, что движение лимфы в них прекращалось. Установлено также, что лимфоток изменяется рефлекторно при болевых раздражениях, повышении давления в каротидном синусе и при раздражении рецепторов кровеносных сосудов многих внутренних органов.
В передвижении лимфы большое значение имеют отрицательное давление в грудной полости и увеличение объема грудной клетки при вдохе. Последнее вызывает расширение грудного лимфатического протока, что облегчает движение лимфы по лимфатическим сосудам.
Движению лимфы, так же как и венозной крови, способствуют сгибания и разгибания ног во время работы и ходьбы. При мышечных сокращениях лимфатические сосуды сдавливаются, что вызывает перемещение лимфы только в одном направлении. Количество лимфы, возвращающейся в течение суток через грудной проток в кровь, составляет у человека около 1000—3000 мл.
-
Регуляция работы сердца… Регуляция деятельности сердца
Механизм регуляции деятельности сердца:
-
Саморегуляция. -
Гуморальная регуляция. -
Нервная регуляция.
Задачи регуляции:
-
Обеспечение соответствия притока и оттока крови от сердца. -
Обеспечение адекватного условиям внутренней и внешней среды уровня кровообращения.
Законы саморегуляции деятельности сердца:
-
Закон Франка-Старлинга - сила сердечных сокращений пропорциональна степени растяжения миокарда в диастолу. Этот закон показывает, что сила каждого
сердечного сокращения пропорциональна конечнодиастолическому объему, чем больше конечнодиастолический объем, тем сильнее сила сердечных сокращений.
-
Закон Анрепа - сила сердечных сокращений возрастает пропорционально повышению сопротивления (давления крови) в артериальной системе. Сердце при каждом сокращении подстраивает силу сокращения под уровень давления, который имеется в начальной части аорты и легочной артерии, чем больше это давление, тем сильнее сердечное сокращение. -
Закон Боудича - в определенных пределах возрастание частоты сердечных сокращений сопровождается увеличением их силы.
Существенно, что сопряжение частоты и силы сокращения определяет эффективность насосной функции сердца при различных режимах функционирования.
Таким образом, сердце само способно регулировать свою основную деятельность (сократительную, насосную) без прямого участия нейрогуморальной регуляции.
Нервная регуляция деятельности сердца.
Эффекты, наблюдаемые при нервных или гуморальных влияниях на сердечную мышцу:
-
Хронотропный (влияние на частоту сердечных сокращений). -
Инотропный (влияние на силу сердечных сокращений). -
Батмотропный (влияние на возбудимость сердца). -
Дромотропный (влияние на проводимость), может быть как положительным, так и отрицательным.