Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3481

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и



-«Аденазиновая» теория. Аденазин блокирует кальциевые каналы в цитоплазматической мембране гладких мышц сосудистой стенки и за счет этого вызывает расширение коронарных сосудов.

Кроме того расширение коронарных сосудов вызывает, /при действии в месте образования и выделения/ увеличение содержания следующих метаболитов:

1)ионов калия, 2) ионов водорода, 3)молочной кислоты,4) СО2 , NO-оксид азота,
Местные сосудосуживающие факторы неизвестны

Дистантная регуляция специфическими метаболитами

Гистамин, кинины, ацетилхолин, простагландин Е расширяют коронарные сосуды. Адреналин и норадреналин взаимодействуя с бета- адренорецепто рами вызывают дилятацию коронарных сосудов.

Взаимодействие катехоламинов с альфа-адренорецепторами вызывает вазоконстрикцию коронарных сосудов. Большие дозы ангиотензина и вазопрессина так же вызывает сужение коронарных сосудов.

Мозговое кровообращение

В мозге

1.протекают энергоемкие процессы, требующие большого потребления глюкозы 2.нет субстрата для анаэробного окисления

  1. отсутствуют запасы О2

  2. потребляет 20% О2 и 17% глюкозы от поступивших во внутреннюю среду организма при собственной массе 2% от веса тела

  3. Т.к. мозг - в черепной коробке, его ткань несжимаема, следовательно объем внутричерепных сосудов, а значит и количество крови в них, остается практически постоянным.

  4. Капилляры мозга не проницаемы для большинства веществ, циркулирующих в кровотоке (ГЭБ). Эндотелиальные клетки наслаиваются друг на друга, пор почти нет, транспорт через них ограничен и строго контролируется ферментами. Растворимые в липидах вещества - проходят. Водорастворимые - не проходят (в том числе - лекарства, яды, токсины).

Через 5-7 с. после прекращения кровообращения в мозге человек теряет сознание. При ишемии мозга более 5 мин происходит блокада микроциркуляции в мозге из-за необратимых изменений в эндотелии сосудов, а так же отек глиальных клеток.


Эти особенности процессов в мозге требуют для его нормального функционирования устойчивого высоко интенсивного процесса кровоснабжения.

Кровоток в мозге в покое составляет 750 мл/мин(15% от МОК)

Регуляция


Ауторегуляция/миогенная/ регуляция

Повышение системного АД приводит к повышению тонуса миоцитов и сужению артерий, снижение АД- к уменьшению тонуса и расширению артерий. За счет этого механизма ауторегуляции поддерживается стабильный мозговой кровоток при изменениях системного АД в пределах 60-180 мм.рт.ст.

Гуморальная регуляция

Осуществляется за счет прямого влияния неспецифических и специфических метаболитов.
Общий мозговой кровоток

  1. Мощным регулятором общего мозгового кровотока является напряжение СО2 в артериальной крови, и как следствие в межклеточной жидкости. Изменение напряжения СО2 на 1 мм.рт.ст. изменяет мозговой кровоток на 6%

Возрастание напряжения СО2 /гиперкапния/ сопровождается расширением мозговых сосудов, а снижение ее/гипокапния/-их сокращением.

Напряжение О2 не является фактором физиологической реляции мозгового кровообращения.
  1. Важнейшие из гуморальных регуляторов

    1. внутрисосудистые вазоконстрикторы: вазопрессин, ангиотензин, простагландины F, катехоламины 2.2.внутрисосудистые дилятаторы: ацетилхолин, гистамин, брадикинин.

Перераспределение крови между областями мозга

Локальное повышение функциональной активности нейронов приводит к функциональной гиперемии этой зоны мозга.

Механизмы перераспределения

Регуляция по быстрому контуру.

В зоне активности в межклеточной жидкости быстро в доли секунды повышается концентрация калия и как следствие локальное расширение сосудов и увеличение кровотока в этой зоне

Регуляция по медленному контуру/относительно медленная/

Интенсивна работающие нейроны достаточно быстро повышают потребление О2 и выделение СО2. Повышение напряжение СО2 приводит к расширению артерий и увеличению кровотока.

Нейрогенная регуляция


Менее эффективна чем гуморальная., так как конечный эффект зависит в первую очередь от рассмотренных выше факторов.

Среди нервных волокон влияющих на тонус мозговых сосудов выделяются адренэргические./альфа- и бета- адренорецпторы/(2 противопо ложных эффекта), холинэргические /сосудорасширяющие/, пептидэргические

/сосудорасширяющие/ -медиатор-вазоинтестинальный пептид, серотонин эргические /сосудосуживающие/.

  1. Особенности гемодинамики в различных сосудистых регионах. Почечный кровоток… Кровообращение в почках


    1. В почках кровоток составляет 900-1200 мл/мин(20-25% от МОК)

    2. Гидростатическое давление в капиллярах клубочков 50-70 мм.рт.ст., т.е. в 2 раза выше чем в других капиллярах

Регуляция

Гуморальная регуляция

Дистантные вазоконстрикторы: ангиотензин 11, катехоламины/в почечных сосудах-альфа-адренорецепторы/, вазопрессин.

Местно: почечные простагландины и почечные кинины вызывают дилятацию сосудов. Избыток СО2 и аденозина- констрикцию.

Нервная регуляция.


Симпатическая нервная система через альфа-адренорецепторы- слабое констрикторное действие, через симпатические холинэргические волокна/есть такие/- слабую вазодилятацию.

Миогенная/ауторегуляция/ регуляция


Базальный тонус почечных сосудов высокий. Это позволяет обеспечить относительно стабильный кровоток при колебании системного давления от 70 до 180 мм.рт.ст.

Печеночное кровообращение


  1. В печеной артерии кровяное давление 100-120 мм.рт.ст. В воротной вене давление около 10 мм.рт.ст., в синусоидах 5 мм.рт.ст, в печеночных венах 2-3 мм.рт.ст.

  2. Величина кровотока 1,0-1,5 л/мин(20-30% от МОК) Через портальную систему 70-80% этого объема, по артериальной системе 20-30%. При максимальной дилятации через печень может проходить до 5,0 л/мин.

  3. В норме постоянство кровотока поддерживается за счет реципрокных артерио-портальных взаимоотношений. Усиление кровотока через порталь ную систему при функциональной гиперемии ЖКТ уменьшает артериальную перфузию печени, и наоборот снижение портального кровотока усиливает артериальную перфузию.

  4. Печень депо крови/500 мл/

  5. Венозный ток осуществляется ритмично в зависимости от фаз дыхательного цикла. При вдохе усиливается приток крови по портальной вене из-за механического сдавления сосудистого ложа ЖКТ, отток крови по печеночным венам и нижней полой вене так же увеличивается за счет присасывающего действия грудной клетки. Регуляция