Файл: Физиология как наука.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 05.12.2023

Просмотров: 3447

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Наиболее широко в ЦНС распространены медиаторы - амины:

Другие производные аминокислот - ГАМК, глицин, глютамин и др.

Название рецептора определено медиатором, с которым он взаимодействует:

Вегетативная нервная система работает по тем же законам, что и нервная система в целом. Морфологические и функциональные особенности вегетативной нервной системы:

Взаимодействие гормонов и парагормонов с клетками-мишенями

Сокращение мышц. При возбуждении кардиомиоцита, при значении ПМ -40 мв, открываются потенциалзависимые кальциевые каналы цитоплазматической мембраны.Это повышает уровень ионизированного кальция в цитоплазме клетки.Наличие Т-трубочек обеспечивает увеличение уровня кальция непосредственно в область концевых цистерн СПР.Это увеличение уровня ионов кальция в области концевых цистерн СПР называют триггерным, так как они (не- большие триггерные порции кальция) активируют рианоди-новые рецепторы, ассоциированные с кальциевыми каналами мембраны СПР кардиомиоцитов.Активация рианодиновых рецепторов повышает проницаемость кальциевых каналов концевых цистерн СПР. Это формирует выходящий кальциевый ток по градиенту концентрации, т.е. из СПР в цитозоль в область концевых цистерн СПР.При этом из СПР в цитозоль переходит в десятки раз больше кальция, чем приходит в кардиомиоцит из вне (в виде триггерных порций).Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. При этом ионы кальция начинают взаимодействовать с молекулами тропонина. Возникает тропонин- кальциевый комплекс. В результате молекула тропонина меняет свою конфигурацию, причем меняет таким образом, что тропонин сдвигает молекулу тропомиозина в желобке. Перемещение молекул тропомиозина делает доступными центры актина для головок миозина.Это создает условия для взаимодействия актина и миозина. При взаимодействии головок миозина с центрами актина на короткий момент формируются мостики.Это создает все условия для гребкового движения (мостики, наличие шарнирных участков в молекуле миозина, АТФ-азная активность головок миозина). Происходит смещение нити актина и миозина относительно друг друга. Одно гребковое движение дает смещение на 1% длины, 50 гребковых движений обеспечивают полное укорочениемышц.Процесс расслабления саркомеров достаточно сложен. Он обеспечивается удалением избытка кальция в концевые цистерны саркоплазматического ретикулума. Это активный процесс, требующий определенных затрат энергии. В мембранах цистерн саркоплазматического ретикулума имеются необходимые транспортные системы. Так представляется мышечное сокращение с позиций теории скольжения. Суть ее заключается в том, что при сокращении мышечного волокна не происходит истинного укорочения нитей актина и миозина, а происходит их скольжение относительно друг друга.Электромеханическое сопряжение. Мембрана мышечного волокна имеет вертикальные углубления, которые располагаются в районе нахождения сар-коплазматического ретикулума. Эти углубления получили название Т-системы (Т-трубочки). Возбуждение, которое возникает в мышце, осуществляется обычным путем, т.е. за счет входящего натриевого тока.Параллельно открываются кальциевые каналы. Наличие Т-систем обеспечивает увеличение концентрации кальция непосредственно около концевых цистерн СПР. Увеличение кальция в области концевых цистерн активирует рианодиновые рецепторы, что повышает проницаемость кальциевых каналов концевых цистерн СПР. Обычно концентрация кальция (Са++) в цитоплазме равна 10" г/л. При этом в районе сократительных белков (актина и миозина) концентрация кальция (Са++) становится равной ,106 г/л (т.е. возрастает в 100 раз). Это и запускает процесс сокращения.Т-системы, обеспечивающие быстрое появление кальция в области концевых цистерн саркоплазматического ретикулума, обеспечивают и электромеханическое сопряжение (т.е. связь между возбуждением и сокращением).Насосная (нагнетательная) функция сердца реализуется за счет сердечного цикла. Сердечный цикл складывается из двух процессов: сокращения (систолы) и расслабления (диастолы). Различают систолу и диастолу желудочков и предсердий. Давление в полостях сердца в различные фазы сердечного цикла (мм рт. ст.).

Регуляция слюноотделения

Сок поджелудочной железы

Тепловой обмен… Все живые организмы делятся на:Гомойотермные - теплокровные (человек и млекопитающие).Пойкилотермные - холоднокровныеОбразующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.Теплопродукция и теплоотдача. Баланс теплопродукции и теплоотдачи является главным условием поддержания постоянной температуры тела.Суммарная теплопродукция в организме состоит из:«первичной теплоты», выделяющейся в ходе реакций обмена веществ, постоянно протекающих во всех организмах и тканях«вторичной теплоты», образующейся при расходовании энергии макроэргических соединений на выполнение определенной работы. Уровень теплообразования в организме зависит от: -величины основного обмена, специфического динамического действия принимаемой пищи-мышечной активности-интенсивности метаболизмаНаибольшее количество тепла образуется в мышцах при их тоническом напряжении и сокращении -«сократительный термогенез». Является наиболее значимым механизмом дополнительного теплообразования у взрослого человека.У новорожденных, мелких млекопитающих имеется механизм теплообразования за счет возрастания общей метаболической активности и , прежде всего, высокой скорости окисления жирных кислот - «несократительный термогенез». Увеличивает уровень теплопродукции (

Теории памяти

Понятие высших психических функций (Выготский)

Система АВ0

Другие антигенны эритроцитов

Резус-фактор

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Физиология газообмена в легких

Гуморальная регуляция дыхания

Гуморальная, рефлекторная, нервная регуляция деятельности сердца

1.Общие свойства возбудимых тканей. Процесс возбуждения. Особенности местного и распространяющегося

2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт веществчерез

3. Электрические явления в возбудимых тканях. История и открытия. Мембранный потенциал и его происхождение.

Механизм формирования ПС связан с:

4. Современные представления о процессе возбуждения. Потенциал действия, его фазы.

5. Сравнительная характеристика местного и распространяющегося возбуждения. Изменение возбудимости клетки во

6. Механизмы раздражения клетки электрическим током. Критический уровень деполяризации мембраны клетки.

8. Механизмы проведения возбуждения по нервным волокнам. Факторы, влияющие на скорость проведения

Механизмы проведения возбуждения по безмиелиновых нервным волокнам такой.

9. Нервно-мышечный синапс, его структура. Механизмы и закономерности нервно-мышечной передачи возбуждения.

Закономерности проведения возбуждения через нервно-мышечный синапс:

10. Физиологические свойства скелетных мышц. Виды и режимы сокращений. Одиночное мышечное сокращение и

В зависимости от частоты стимуляции выделяют следующие виды мышечного сокращения:

Тетанические сокращения отличается от одиночного следующими параметрами:

12. Функциональная характеристика гладких мышц.

13. Сила и работа мышц. Утомление и его особенности в целостном организме.

14. Нейрон как структурная и функциональная единица ЦНС. Его свойства и функции.

Основные свойства нейронов:

15. Биологическая регуляция, ее виды и значение. Контур биологической регуляции. Роль обратной связи в регуляции

16. Саморегуляторные принципы поддержания постоянства внутренней среды организма ( гомеостаз, гомеокинез).

17-18. Возбуждение в ЦНС. Механизмы и закономерности передачи возбуждения в центральных

Особенности передачи возбуждения через центральные аксо-соматические химические синапсы.

19-21. Торможение в ЦНС (И.М. Сеченов). Его виды и роль./ Современные представления о механизмах центрального

Постсинаптическое гиперполяризацийне торможения.

Пресинаптическое деполяризации торможения.

Особенности передачи возбуждения в ЦНС:

23. Рефлекторный принципы регуляции (О.Декарт, Г.Прохаска). Его развитие в трудах И.М.Сеченова, И.П.Павлова,

Рефлекторная дуга имеет следующие звенья:

24. Рефлекс как элементарный акт нервной регуляции. Строение рефлекторной дуги

25. Рецепторы, их классификация, структура и механизмы возбуждения. Рецепторный и генераторный потенциалы Физиология рецепторов

По расположению рецепторы подразделяют на:

По виду адекватного раздражителя, воспринимают рецепторы, их подразделяют на:

Физиологические механизмы кодирования информации в рецепторах.

26. Механизм кодирования информации в рецепторах. Адаптация рецепторов.

Анализ информации и кодирования в рецепторах связаны с их свойствами и осуществляются следующим образом:

27. Общие принципы координационной деятельности ЦНС.

28. Суммация возбуждения, торможение нейронами ЦНС. Виды суммации и их значение

В зависимости от локализации рецепторного звена и эффекторного органа рефлексы делят на висцеро-

34. Сегментарные и надсегментарные центры вегетативной нервной системы

35. Гуморальная регуляция, её отличие от нервной. Факторы гуморальной регуляции.

Факторы гуморальной регуляции:

36. Свойства гормонов. Механизмы действия гормонов на клетки организма По химической структуре гормоны делятся на:

Механизм действия на клетки жирорастворимых гормонов:

Механизм действия жирорастворимых гормонов определяет следующие их особенности:

При воздействии на клетки-мишени водорастворимых гормонов образуются внутриклеточные посредники:

Механизм действия гормонов с участием ионов Са 2+ и системы кальций-кальмодулин как внутриклеточных посредников.

Ионы Са 2+:

Активный кальмодулин:

40. Общие принципы регуляции функций организма. Взаимодействие нервной, эндокринной и иммунной систем

41. Роль спинного мозга в процессах регуляции опорно-двигательного аппарата и вегетативных функций организмы.

Нарушения функции мозжечка:

Классификация условных и безусловных рефлексов

- постоянство внутренней среды организма;

Современные представления о путях замыкания временных связей:

Эмоции выполнѐят две функции : сигнальную и регуляторную.

Эмоции делят на низшие и высшие.

Формула Г.И. Косицкого:

Структурное обеспечение эмоций. Эмоциогенные структуры мозга.

5.повышение норадреналина- агрессиѐ ,отрицательные стенические эмоции, 6.адреналина-трусливость, депрессиѐ.

Две сигнальные системы действительности

Типы высшей нервной деятельности

Общая характеристика восприятия

Состав крови

Нормы гематокрита

Безазотистые органические компоненты крови

Основные физико-химические константы крови:

Противосвертывающая система крови.

Виды гемоглобина

В норме гемоглобин содержится в виде нескольких соединений:

Механизм внешнего дыхания

Биомеханика вдоха и выдоха

Параметры вентиляции легких:

Легочные объемы:

Легочные емкости:

Методы исследования вентиляции легких:

Транспорт О2 и СО2 кровью:

Кислородная емкость крови, анализ кривой диссоциации:

Анализ кривой диссоциации НbО2:

^ Рефлекторная регуляция дыхания

Физиологические свойства сердечной мышцы. Современные представлениѐ о субстрате, природе и градиенте75.

составлѐящей 60 - 80 импульсов в минуту. Синусовый узел обладает наибольшим автоматизмом и его называют автоматическим центром первого порядка.

второго порядка. Центр второго порядка может вырабатывать 40 - 60 импульсов в минуту.

^ Внутрисердечные механизмы регуляции.

82. Роль сосудов в гемодинамике. Основные законы гемодинамики. Факторы, обеспечивающие движение крови по

83.Кровяное давление, его изменения по ходу сосудистой системы. Артериальное давление, его виды и методы

Капиллярный кровоток и его особенности. Микроциркуляция и ее роль в механизме обмена жидкости и

Тонус артериол и венул. Значение его изменений для гемодинамики. Сосудодвигательные нервы и их влияние на

Рефлекторная регуляция сердечно-сосудистой системы в зависимости от изменения положения тела в

Обмен веществ и энергии и методы его оценки. Виды энергических затрат. Специфически-динамическое действие

Механизмы клубочковой фильтрации. Фильтрационное давление и факторы его определяющего. Состав

Механизм поддержания почками постоянства внутренней среды организма : рН, осмотического давления,

97. Функциональная система питания и пищеварения, ее основные звенья. Сенсорное насыщение. Функции

Пищеварение в полости рта. Состав и физиологическая роль слюны. Слюноотделение, его регуляция

101. Физиологическая роль печени, участие желчи в пищеварении. Факторы стимулирующие секрецию желчи,

105. Гипофиз, его функциональные связи с гипоталамусом и участие в регуляции деятельности эндокринных органов.

106. Физиология щитовидной и околощитовидной желез

107. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функции организма

Характеристика зрительной сенсорной системы. Рецепторный аппарат. Фотохимические процессы в сетчатке при

Слуховая сенсорная система. Звукоулавливающие и звукопроводящие аппараты. Рецепторный отдел, механизмы

Структурно-функциональная организация вестибулярного аппарата его роль в восприятии и оценке положения

Физиологическая характеристика обонятельной сенсорной системы. Механизмы восприятия запахов

биологические ритмы и их роль в жизнедеятельности организма. Роль биоритмов в профилактике заболеваний и

защитный рефлекс, заключающийся в усилении секреции слюны. Рефлекторная гиперсаливация при их контакте со слизистой ротовой полости может затруднять выполнение стоматологических манипуляций.

№56. 1. Жевание (возбуждение проприорецепторов жевательных мышц) при­водит рефлекторному усилению секреции слюны, желудочного и панкреати­ческого соков.

2. Чередование повышения и снижения давления на зуб и парадонт при жевании способствует притоку и оттоку крови в тканях.

№57. Особенностью всасывания в ротовой полости является то, что всосав­шиеся здесь вещества попадают в общий кровоток по системе верхней полой вены. Таким образом, они не попадают в систему воротной вены и, следова­тельно, не инактивируются в печени, как вещества, которые всасываются в тонкой кишке.

№58. Больным с гиперсекрецией желудочного сока (например, при язвенной болезни или при хроническом гастрите с повышенной секреторной активно­стью) традиционно рекомендуют диету основанную на принципах щажения желудка..

1) механическое щажение - ограничение употребления грубой пищи;

2) химическое щажение – ограничение веществ, повреждающих слизистую и являющихся сильными стимуляторами секреции желу­дочного сока: а) насыщенных мясных бульонов и отваров овощей; б) острых приправ и пряностей; в) слабых алкогольных и газированных напитков, кофе;

3) термическое щажение - ограничение употребления очень горячей и очень холодной пищи.

Все перечисленные рекомендации не являются абсолютными, так как запрет на упот­ребление какой-либо пищи наносит психологический ущерб больным, а соблюдение таких запретов обычно не улучшает течение болезни, особенно, по сравнению с лечени­ем фармакологическими средствами.
№59. Пилорический отдел желудка играет роль «клапана», регулирующего порционный переход химусаиз желудка в 12-перстную кишку по мере готов­ности к перевариванию. При удалении пилорического отдела желудка резко ускоряется эвакуация содержимого из желудка и продвижение химуса по тон­кой кишке. При этом:

1) нарушается переваривание преимущественно жиров и белков, которые требуют длительной подготовки;

2) резко ускоряется всасывание углеводов из тонкой кишки в кровь, они стимулируют выброс инсулина с развитием гипогликемии;

3) повышается осмотическое давление в тонкой кишке, в нее диффундиру­ет большое количество жидкости, снижая ОЦК.


4) раздражение рецепторов тонкой кишки приводит к резкому повышению сек­реции биологически активных веществ (ацетилхолин, гистамин, гастроинтестинальные гормоны), которые могут оказывать нежелательное системное действие.

В результате развивается демпинг-синдром, при котором наблюдаются симптомы как со стороны ЖКТ (тошнота, рвота, понос, метеоризм и др.), так и общие (слабость, тахикардия, обморок и др.).

Кроме того, G-клетки слизистой оболочки пилорического (антрального) отдела желудка секретируют гормон гастрин - одно из веществ, стимулирую­щих секрецию НCl в желудке. При удалении привратника, секреция НСl сни­жается, что также нарушает пищеварение.

№60. Возможны следующие нарушения:

1) затруднение переваривания и всасывания липидов (желчь способствует их эмульгации и всасыванию, активирует липазы панкреатического сока);

2) угнетение моторики тонкой кишки (желчь ее стимулирует);

3) угнетение внешней секреции поджелудочной железы. Возрастает также риск инфекции ЖКТ (желчь обладает бактерицидной функцией).

№.61. Нарушается, так как 12-перстная кишка выполняет важные функции:

1) в 12-перстной кишке вырабатывается фермент энтерокиназа, который активирует протеолитические ферменты панкреатического сока;

2) в 12-перстной кишке вырабатываются гастроинтестинальные гормоны (секретин, холецистокинин-панкреозимин и_др.), которые регулируют работу других отделов ЖКТ: а) кишечную фазу секреции желудочного и панкреатиче­ского соков, желчеобразование и желчевыведение б) моторику ЖКТ, в частности порционную эвакуацию химуса.

№82. Слизистая желудка секретирует гастромукопротеид (Фактор Касла) необходимый для всасывания витамина В12 в тонкой кишке. Витамин В12 (кобаламин) - кофермент синтеза нуклеиновых кислот, необходим для деления клеток (в т.ч. в процессе эритропоэза. Для предупреждения анемии следует вводить витамин В12 в инъекциях.

№63.. Медиатор парасимпатических волокон ацетилхолин вызывает сокращение гладкой мускулатуры стенок привратника, действуя через М-холинорецепторы. Атролин блокирует М-холинорецепторы и снижает тонические влияния пара­симпатических нервов и уменьшает стеноз привратника, но только если стеноз был следствием гипертонуса гладкой мускулатуры. При рубцовых изменениях привратника атропин не приведет к уменьшению стеноза.

№64. Возможные причины присутствия в копрограмме жиров:

1) снижение секреции

панкреатического сока (дефицит липаз);

2) снижение секреции желчи (желчь способствует всасыванию липидов, активирует панкреатические липазы);

3) нарушение механизмов всасывания липидов в тонкой кишке.

Возможные причины присутствия в копрограмме непереваренных мышеч­ных волокон:

1) снижение секреции панкреатического сока (дефицит протеаз);

2) нарушение пищеварения в желудке (недостаточное действие пепсина).

№65. При регулярном приеме пищи происходит «настройка» биоритмов пищеварительной системы - подготовка к приему пищи в определенное время; синтез пищеварительных ферментов и усиление секреции пищеварительных желез. Иногда это называют «условным рефлексом на время”.
№№ 66 - 70. Физиология выделения

№66. Совокупное действие нескольких механизмов, приводящих к уменьше­нию клубочковой фильтрации и/или увеличению реабсорбции воды в почках и, следовательно, к уменьшению диуреза:

1) снижение АД (ниже 90 мм рт.ст.) непосредственно приводит к уменьше­нию гидростатического давления в капиллярах клубочка и уменьшению эф­фективного фильтрацию иного давления (ЭФД), определяемого по уравнению Старлинга: ЭФД = Рк - Рм + Пм - Пк (где Р - гидростатическое давление, П - онкотическое давление, к - плазмы крови, м - мочи), снижение ЭФД приводит к снижению фильтрации,

2) снижение АД рсфлекторно приводит к увеличению секреции антидиуретического гормона (гипоталамус, нейрогипофиз), который усиливает реабсорбцюо воды,

3) снижение давления в приносящей артериоле приводит к увеличению сек­реции ренина клетками юкстагломерулярного аппарата и к активации ренин-ангиотензин-альдостероновой системы (см. № 25): а) альдостерон усиливает реабсорбцию натрия и воды, 6) ангиотензин II снижает фильтрацию: - сужая приносящие артериолы, что уменьшает гидростатическое давление в капиллярах клубочка, ЭФД (см. уравнение Старлинга); - вызывая сокращение мезангиальных клеток, что снижает площадь фильтрационной поверхности клубочка.

№67. Сужение просвета мочеточника приводит к повышению гидростатиче­ского давления мочи в почечных канальцах и в капсуле нефрона. Последнее приводит к уменьшению эффективного фильтрационного давления и скорости клубочковой фильтрации (см. № 66).

№68. Проба Реберга позволяет определить

1) скорость
клубочковой фильтрации. СКФ = (См/Сп) * Д, где См - кон­центрация креатинина в моче; Сп - концентрация креатинина в плазме крови; Д - диурез;

2) величину канальцевой реабсорбции воды. R(%) = (СКФ - Д) / СКФ.

В норме: 1)СКФ = 150-180 л/сут, 2) R = 95-99%.

В задаче: 1) СКФ = (0.85/0.1) * 10 = 85л/сут, 2) R =(85 - 10)/85= 88.2%.

Таким образом, наблюдается снижение фильтрации и реабсорбции. По­следнее более выражено, поэтому диурез увеличен (норма: 0.8 - 2.0 л/сут).

№69. Повышение концентрации глюкозы в крови:

1) приводит к повышению осмотического давления плазмы крови, возбуж­дению осморецепторов (гипоталамус), что сопровождается возникновением чувства жажды;

2) приводит к повышению концентрации глюкозы в первичной моче; если эта концентрация превысит почечный порог реабсорбции глюкозы, то глюкоза остается во вторичной моче, повышая ее осмотическое давление и замедляя реабсорбцию воды («глюкоза выводит за собой воду»).

№70. Концентрация глюкозы в крови соответствует норме (3.3-5.5 ммоль/л), что исключает сахарный диабет. Можно предполагать наличие у больного несахарного диабета возникающего при недостатке антидиуретического гормона вследствие снижения его синтеза (в гипоталамусе) или секреции (в нейрогилофизе).
№№ 71 - 73. Физиология энергообмена и терморегуляции

71. Дыхательный коэффициент (ДК) - отношение объема выделенного при дыхании СО2 к объему потребленного О2; В атмосферном воздухе содержится 21% О2; и 0.03% СО2;. При дыхании: потребляется О2;: 21 - 16 = 5%, выделяется СО2: 4 - 0.03 = 4%. Следовательно, ДК = 4/5 = 0.8.

Зная ДК, находим по таблице калорический эквивалент кислороду. КЭК = 4.8 ккал/л.

Скорость потребления О2 : VО2 = МОД * 5% = 6 х 5% = 0.3 л/мин.

Основной обмен. ОО = КЭК * VО2 = 4.8 * 0.3 = 1.44 ккал/мин = 2070 ккал/сут. Норма для данного человека (по таблицам исходя из возраста, массы и длины тела) ОО = 1800 ккал/сут. Таким образом, у данного человека ОО повышен на 15%.

№72 Чтобы снизить теплопродукцию за счет уменьшения сократительного термогенеза (мышечный тонус и дрожь).

№73. Смысл процедуры - охлаждение организма за счет усиления теплоотда­чи путем испарения. Использование при этом холодной воды привело бы рефлекторно, через раздражение холодовых рецепторов кожи:

1) к повышению теплопродукции, прежде всего из-за усиления сократительного термогенеза (тонус и дрожь скелетных мышц);


2) к уменьшению теплоотдачи, прежде всего из-за сужения сосудов кожи. Эти реакции снизили бы эффект процедуры (прямое охлаждающее действие води при обтирании практически не значимо).
№№74-78. Функции центральной нервной системы

№74 Разгибание головы вызывает рефлекторное повышение тонуса разгиба­телей (позный тонический рефлекс) замыкается на уровне ствола головного мозга.

№75. Важным принципом координации рефлекторной деятельности является наличие обратной афферентации.. В частности, проприорецепторы периодонта и жевательных мышц фиксируют давление на зубы и напряжение жевательных мышц, При очень сильном сокращении жевательных мышц срабатывает отри­цательная обратная связь: рефлекторное расслабление жевательных мышц,

№76. Перечисленные симптомы характерны для нарушения функций мозжеч­ка (кооодинация движений и регуляция мышечного тонуса).

№77. Бинокулярное зрение у пострадавшего не восстановится. При тренировке мозг может определять степень удаленности предметов по степени напряжения ццлиарных мышц. При аккомодации глаза сокращение этих мышц обеспечивает такую кривизну хрусталика, которая необходима для получения резкого изобра­жения на сетчатке. Возможности такой компенсации ограничены.

№78. Пример поведения, организованного доминантой. Доминанта - это временно господствующая рефлекторная система, направляющая поведение организма на достижение определенной цели, стоящей перед ним в данный момент времени. Одним из свойств доминантного очага, в ЦНС является его способность подавлять деятельность других нервных центров (в т.ч. участ­вующих в восприятии боли), тормозить другие рефлексы (см. также № 11).
ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

  1. Рефлекторный принцип регуляции функций организма (И.М.Сеченов, И.П. Павлов). Строение рефлекторной дуги соматического и вегетативного рефлексов.

И.М. Сеченов распространил рефлекторный принцип действия нервной системы на любую, в том числе и высшую нервную деятельность организма. Он показал, что рефлекс отражает сложные, но материальные процессы, протекающие в ЦНС во взаимодействии с внешней средой. И.М. Сеченовым предложены следующие положения:

1. всякая деятельность организма в конечном итоге сводится к движению;

2. всякое движение по своему происхождению есть рефлекс.

И.П. Павлов развил и экспериментально обосновал рефлекторную теорию. Он разделил все рефлексы по механизму образования на безусловные (врожденные) и условные (приобретенные).